
073

Citation: Franciscu SY, Ruggahakotuwa RK, Samarawickrama SWYS, Lahiru JAD (2023) GRIFFIN: Enhancing the security of smart contracts. Trends Comput Sci Inf
Technol 8(3): 073-081. DOI: https://dx.doi.org/10.17352/tcsit.000071

https://dx.doi.org/10.17352/tcsitDOI: 2641-3086ISSN:

E
N

G
IN

E
E

R
IN

G
 G

R
O

U
P

Abstract

In the rapidly evolving landscape of decentralized systems, ensuring the integrity and trustworthiness of smart contracts is paramount for developers. This paper
presents a comprehensive strategy for enhancing smart contract security by focusing on specifi c high-risk areas, including Integer Overfl ow, Dangerous Delegate Calls,
Timestamp Dependency, Reentrancy Vulnerabilities, Race Conditions, and Sybil attacks. Despite the growing signifi cance of smart contracts in blockchain ecosystems, a
notable research gap exists in the development of specialized tools capable of providing real-time vulnerability detection and mitigation guidance. To bridge this gap, our
research introduces the ‘GRIFFIN’ - Smart Contracts.

Vulnerability Detector is a powerful tool that has been rigorously tested and validated. Our study has yielded signifi cant results, demonstrating the effi cacy of the
GRIFFIN in proactively identifying and mitigating critical vulnerabilities within a diverse dataset of 12,000 real-world solidity smart contracts. The tool leverages state-of-
the-art static analysis techniques and machine learning algorithms, achieving superior accuracy rates when compared to existing solutions. This heightened accuracy not
only empowers developers but also boosts the overall robustness and dependability of smart contract ecosystems. The cornerstone of our research is the development
and validation of a practical, user-centric solution. By providing actionable insights, code snippets, and real-time feedback to developers, GRIFFIN equips them with the
knowledge and tools needed to address vulnerabilities swiftly and effectively. This innovative approach is not merely an academic endeavor but a signifi cant stride
towards cultivating resilient and dependable smart contract environments. It instills a culture of security-conscious development practices, ensuring that the smart
contracts crucial to decentralized systems can operate with the highest level of trust and reliability.

Index Terms— Smart Contracts; Integer overfl ow; Dangerous

Delegate call; Timestamp Dependence; Reentrancy Attack; Race

Condition; Sybil Attack; Static Analysis; Detection

Research Article

GRIFFIN: Enhancing the security
of smart contracts
Franciscu SY*, Ruggahakotuwa RK, Samarawickrama

SWYS and Lahiru JAD
Department of Computer, Systems Engineering, Sri Lanka Institute of Information

Technology, Colombo, Sri Lanka

Received: 28 October, 2023
Accepted: 16 November, 2023
Published: 17 November, 2023

*Corresponding author: Franciscu SY, Department of
Computer, Systems Engineering, Sri Lanka Institute of
Information Technology, Colombo, Sri Lanka, Tel: +94
76 3093803; E-mail: it20017910@my.sliit.lk ; zyberzone.
info@gmail.com

ORCiD: https://orcid.org/0009-0008-8700-6785

Copyright License: © 2023 Franciscu SY, et al.
This is an open-access article distributed under the
terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

https://www.peertechzpublications.org

Introduction

Smart contracts, which are autonomous agreements
recorded on a blockchain [1], have emerged as a transformative
innovation with diverse applications in fi nance, supply chain
management, and decentralized applications [2]. As the
popularity of smart contracts continues to grow, ensuring their
security becomes paramount to prevent fi nancial losses, legal
disputes, and disruptions within decentralized ecosystems.
This research study addresses the pressing need for robust

smart contract security by presenting a comprehensive strategy
for detecting vulnerabilities. We focus on detecting critical
vulnerabilities such as Integer Overfl ow, Dangerous Delegate
Call and Timestamp Dependency, Reentrancy Vulnerability, and
Race Conditions. These vulnerabilities pose signifi cant threats
to the reliability, availability, and trustworthiness of smart
contracts, necessitating their identifi cation and prevention.

The increasing complexity and programmability of
smart contracts render them susceptible to a range of
security fl aws. For instance, Integer Overfl ow occurs when

074

https://www.peertechzpublications.org/journals/trends-in-computer-science-and-information-technology

Citation: Franciscu SY, Ruggahakotuwa RK, Samarawickrama SWYS, Lahiru JAD (2023) GRIFFIN: Enhancing the security of smart contracts. Trends Comput Sci Inf
Technol 8(3): 073-081. DOI: https://dx.doi.org/10.17352/tcsit.000071

mathematical operations on unsigned numbers exceed their
maximum value, resulting in unexpected and potentially
hazardous behavior. Dangerous Timestamp and Delegate Call
Dependency vulnerabilities expose contracts to tampering and
unauthorized access, jeopardizing their intended functionality.
Reentrancy Vulnerability enables attackers to repeatedly
enter a contract before previous actions conclude, potentially
leading to unauthorized fund transfers or data alterations.
Race Conditions arise when the execution sequence of
contract operations depends on unpredictable external factors,
creating opportunities for malicious actors to exploit timing
discrepancies.

We introduce ‘GRIFFIN’ - The Smart Contracts Vulnerability
Detector, an advanced tool that integrates static analysis
methodologies to address these challenges. Our tool scrutinizes
smart contract codes to identify potential risks associated with
these vulnerabilities. It provides developers with actionable
insights and solutions to mitigate these vulnerabilities by
analyzing control fl ow, data dependencies, and external
interactions. Our approach aims to assist developers in crafting
more secure and reliable smart contracts by leveraging a
knowledge base of known vulnerability patterns and cutting-
edge analytical techniques.

The remainder of this research study is organized as
follows: Section 2 provides a summary of pertinent literature
on smart contract security. Section 3 delves into the specifi c
vulnerabilities we target and elucidates their impact on
smart contract ecosystems. Section 4 details the design and
implementation of our Smart Contracts Vulnerability Detector,
including an explanation of the analytical methodologies
and algorithms employed. Finally, Section 5 outlines our
contributions and explores potential future avenues for
enhancing smart contract security.

Related work

In recent years, much effort has been devoted to the
creation of tools and frameworks for discovering vulnerabilities
in smart contracts. These initiatives are part of a coordinated
effort to improve the security of blockchain-based systems
by proactively recognizing possible risks and vulnerabilities.
Several prominent tools and frameworks have arisen,
each applying its own methodology to assess and identify
vulnerabilities in smart contracts. This collaborative endeavor
underscores the industry’s dedication to bolstering blockchain
technology’s integrity and resilience, eventually promoting a
more secure and dependable environment for decentralized
apps and transactions.

Among these trailblazing technologies, Mythril [3] stands
out as an open-source symbolic execution tool that has
been methodically engineered to expose vulnerabilities like
reentrancy attacks, integer overfl ow, and unhandled exceptions.
Because of its user-friendly design and rich analytical
capabilities, Mythril has garnered traction in the blockchain
world. It provides a deeper knowledge of the complexities of
smart contract vulnerabilities by giving extensive data and
actionable insights. This allows developers to make educated

judgments and make required changes to ensure the robustness
and security of their apps. Furthermore, Mythril’s capacity
to carry out symbolic execution successfully assists in the
discovery of complicated problems, such as possible reentrancy
assaults, which are notoriously diffi cult to identify using
traditional techniques. Its ability to do extensive inspections of
all alternative execution routes considerably contributes to the
reduction of security risks and the prevention of unanticipated
vulnerabilities, encouraging a more secure and dependable
environment for Ethereum-based applications [4].

Oyente [5] is another famous tool in this space, renowned
for its unique methodology utilizing symbolic execution and an
intermediate representation to detect vulnerabilities. Oyente
has made major contributions to smart contract analysis in
the blockchain realm, owing to its novel usage of symbolic
execution and an intermediate representation for vulnerability
discovery. Its emphasis on transaction sequencing and call stack
depth has been critical in identifying nuanced vulnerabilities
that would otherwise go undetected in traditional testing.
Nonetheless, its limitations in dealing with specifi c control
fl ow categories paved the way for the development of more
advanced tools such as Manticore. Manticore has emerged as
a more complete solution by addressing these constraints,
providing increased capabilities for deconstructing complicated
smart contract vulnerabilities and improving the overall
security infrastructure of blockchain applications.

Manticore [6] positioned as a high-performance symbolic
execution tool, rectifi es several limitations prevalent in
its predecessors. Manticore hailed as a high-performance
symbolic execution tool, has effectively overcome several
problems that plagued previous tools. This progress is largely
due to the addition of support for complicated instructions
and a detailed examination of Ethereum’s Yellow Paper specs.
Its adaptability enables a thorough investigation of Ethereum
smart contracts, allowing for the detection of vulnerabilities
such as those caused by timestamp dependencies and complex
gas-related behaviors. However, the ongoing argument about
the balance of accuracy and scalability in Manticore execution
remains an important academic study and conversation issue.
This refl ects the tool’s importance in the fi eld and the ongoing
effort to improve its capabilities to reach a more ideal mix of
precision and scalability for thorough smart contract analysis
[7].

The surge in interest in machine learning has infl uenced
the development of vulnerability analysis tools, and Security
has successfully capitalized on this trend [8]. Security examines
smart contracts to discover possible vulnerabilities using
a rule-based architecture reinforced by machine learning.
Securify signifi cantly increases its precision and fl exibility by
using information obtained from a dataset including identifi ed
vulnerabilities, resulting in more effective and precise
vulnerability identifi cation. This technique not only improves
the tool’s capacity to detect existing vulnerabilities but also
allows it to adapt to developing threat environments, making
it a strong and proactive solution for enhancing smart contract
security [9].

075

https://www.peertechzpublications.org/journals/trends-in-computer-science-and-information-technology

Citation: Franciscu SY, Ruggahakotuwa RK, Samarawickrama SWYS, Lahiru JAD (2023) GRIFFIN: Enhancing the security of smart contracts. Trends Comput Sci Inf
Technol 8(3): 073-081. DOI: https://dx.doi.org/10.17352/tcsit.000071

Furthermore, the emergence of tools like Slither
[10] underscores the amalgamation of diverse analytical
techniques. Slither integrates both static and dynamic analyses,
culminating in a comprehensive identifi cation of vulnerabilities
encompassing uninitialized storage pointers and incorrect
function access controls. This fusion of methodologies
effectively harnesses the intrinsic strengths of both analysis
types, thereby enabling a more comprehensive identifi cation
of vulnerabilities.

The importance of smart contract vulnerability research tools
cannot be emphasized, especially with the growing integration
of blockchain technology across several businesses. Mythril,
Oyente, Manticore, Securify, and Slither are just a few of the
tools available, each concentrating on a different area of smart
contract security. Their different techniques, which range from
symbolic execution to machine learning integration, represent
continuous attempts to improve the accuracy, scalability, and
adaptability of vulnerability analysis tools. As the blockchain
ecosystem evolves, these tools will be critical in ensuring
the integrity and security of smart contracts, permitting the
widespread acceptance and deployment of blockchain solutions
across multiple industries.

Methodology

The technique described here seeks to give a complete
approach to the study and identifi cation of vulnerabilities in

smart contracts by using a strong mix of data preprocessing,
machine learning model training, and sophisticated security
mechanisms. The importance of guaranteeing the integrity
and security of smart contracts cannot be emphasized in the
ever-expanding realm of blockchain technology. The potential
dangers associated with vulnerabilities like reentrancy attacks,
token misuse, and Sybil attacks [11] have been focal points
for developers and stakeholders as blockchain is increasingly
being integrated across multiple businesses. This technique
addresses these issues by executing a systematic procedure
that begins with the collection and analysis of a large dataset
and ends with the building of a sophisticated web application
interface capable of delivering thorough vulnerability reports
(Figure 1).

The fi rst phase is acquiring a comprehensive dataset
comprised of a varied variety of smart contracts and
accompanying transaction data, allowing for a more nuanced
understanding of the prevalent vulnerabilities within the
blockchain ecosystem. Following that, a thorough data
preprocessing step is carried out, which includes feature
extraction techniques, data balancing tactics, and multiple
classifi cation approaches. This makes it easier to create a clean
and structured dataset, which is required for the successful
training of different machine learning models such as Deep
Neural Networks [12], SVM classifi ers [13], K-NN classifi ers
[14], and ensemble approaches such as Adaboost [15], Random
Forest [16], and Extreme Boost classifi ers [17].

Figure 1: Technical Overview Diagram.

076

https://www.peertechzpublications.org/journals/trends-in-computer-science-and-information-technology

Citation: Franciscu SY, Ruggahakotuwa RK, Samarawickrama SWYS, Lahiru JAD (2023) GRIFFIN: Enhancing the security of smart contracts. Trends Comput Sci Inf
Technol 8(3): 073-081. DOI: https://dx.doi.org/10.17352/tcsit.000071

The trained models are then subjected to cross-validation
techniques to assess their resilience and dependability,
allowing the discovery and selection of the best machine-
learning algorithm for smart contract vulnerability detection.
Furthermore, sophisticated security features, like a token
locking mechanism and a reputation-based system to resist
Sybil attacks, are included in the technique to strengthen the
smart contract system’s security infrastructure. This strategy
culminates in a user-friendly web application interface with a
robust reporting system, allowing users to proactively reduce
vulnerabilities and assure the resilience and trustworthiness of
their blockchain-based apps.

Dataset preparation

To effectively harness machine learning models for the
purpose of learning from sequential data, it is imperative to
meticulously curate a well-structured dataset. This section
elucidates the multifaceted steps involved in the meticulous
preparation of datasets pertaining to both vulnerable and
nonvulnerable smart contracts.

In the context of this research paper, we employed the
Smart Contract Dataset sourced from the Messi-Q GitHub
repository [18]. This dataset has been generously shared on
GitHub by Peng Qian, a PhD candidate specializing in Computer
Science at Zhejiang University [19].

The dataset acquisition process involved the retrieval of
data from Etherscan’s verifi ed contracts, which represent
genuine smart contracts deployed on the Ethereum mainnet
[20]. The resultant dataset comprised a total of 12,515 smart
contracts, all of which possessed corresponding source code.
In accordance with Table I, focus was placed on eight distinct
vulnerability types within this dataset, specifi cally Timestamp
Dependency (TP), Block Number Dependency (BN), Dangerous
Delegate Call (DG), Ether Frozen (EF), Unchecked External Call
(UC), Reentrancy (RE), Integer Overfl ow (OF), and dangerous
Ether Strict Equality (SE).

For the defi nitive labeling of the smart contracts in question,
a comprehensive two-step methodology was adopted. Initially,
vulnerability-specifi c patterns, including the utilization of
keyword matching, were employed to provisionally assign
labels to these contracts. Subsequently, a thorough manual
assessment was conducted to validate the presence of specifi c
vulnerabilities within each smart contract. This approach was
instrumental in optimizing the labeling process by prioritizing

the identifi cation of potentially vulnerable contracts, while
simultaneously excluding those determined to be secure.
Notably, all fi les were systematically organized based on their
respective vulnerabilities, and each dataset was accompanied
by a function-wise comprehensive ground truth table with
binary classifi cation.

Data pre-processing

The inherent imbalance within the dataset was an
important concern that necessitated addressing throughout
the initial stages of our data preparation procedure. It
became clear that the distribution of fi les across the various
vulnerability categories was noticeably unequal. To correct this
imbalance, we used the ‘learn.over_sampling’ methodology
[21], a robust method that produced random samples for each
vulnerability class methodically. This methodical approach
guaranteed that every vulnerability category in our dataset
had a consistent representation and that all categories reached
the stated maximum dataset sample size. As a result, we were
able to standardize our dataset to include a total of 100K data
points, successfully minimizing any inherent discrepancies
and promoting equitable representation.

ros = RandomOverSampler(sampling_strategy=’auto’,
random_state=42)

X_resampled, y_resampled = ros.fi t_resample(X, y)

X_resampled = X_resampled[‘Functions’]

processed_data = pd.DataFrame({

Function’: X_resampled,

‘Label’: y_resampled

})

Random over sampling

Following the harmonization of our dataset, a critical step
was performed to combine the many data sources into a single,
cohesive entity. This combination of data sources permitted the
production of a complete ground truth table that included all
various vulnerability kinds that had been discovered. This table
served as a cornerstone for our subsequent analyses, enabling
a comprehensive and systematic examination of vulnerabilities
across the entire dataset. With these preparatory steps
completed, we now possess a meticulously curated dataset that
is distinguished by its function-wise labeling and multi-class
classifi cation scheme, setting the stage for the advanced stages
of our research endeavor.

vulnerability_mapping = {

1: “Block Number Dependency”,

2: “Reentrancy”,

3: “Timestamp Dependency Vulnerability”,

4: “Dangerous Delegatecall Vulnerability”,

Table 1: Result of ML algorithms.

Model name Accuracy F1 Score Precision Recall Cross-validation

KNN 0.88 0.99 0.98 0.99 0.88

Random
Forrest

0.90 0.99 0.99 0.99 0.90

SVM 0.90 0.99 0.99 0.99 0.90

SGDC 0.89 0.99 0.99 0.99 0.89

ADB 0.39 0.97 0.98 0.94 0.39

XGB 0.88 0.99 0.99 0.98 0.88

077

https://www.peertechzpublications.org/journals/trends-in-computer-science-and-information-technology

Citation: Franciscu SY, Ruggahakotuwa RK, Samarawickrama SWYS, Lahiru JAD (2023) GRIFFIN: Enhancing the security of smart contracts. Trends Comput Sci Inf
Technol 8(3): 073-081. DOI: https://dx.doi.org/10.17352/tcsit.000071

5: “Integer Overfl ow Vulnerability”,

}

Multi-class classifi cation

In our data preparation, we partitioned our balanced
100,000data-point dataset into training (80%) and testing
(20%) subsets, adhering to standard practice. This segmentation
enables robust model training as well as independent model
assessment.

X_train, X_test, Y_train, Y_test = train_test_
split(features, labels, test_size=0.2)

feature_extraction = Tfi dfVectorizer(min_df
= 1, lowercase=True)

TFIDF Vectorizer [22] was used for feature extraction to
aid machine learning. This method translates textual smart
contract source code to numerical representation by assigning
values to terms based on their relevance in documents and
throughout the dataset. This step was critical in preparing our
smart contract data for machine learning analysis later.

Implementation

In our research, we have harnessed a suite of seven distinct
machine learning models, each thoughtfully selected for
its suitability in addressing the complexities of multi-class
classifi cation to train the above data set. We have analyzed
7 major models such as K-Nearest Neighbor (KNN), Support
Vector Machine (SVM), Random Forest Classifi er, Extreme
Gradient Boost (XGBoost) Classifi er, Stochastic Gradient
Descent (SGD) classifi er, AdaBoost Classifi er and Deep Neural
Network (DNN) which give better accuracy results.

In our analysis, K-Nearest Neighbors (KNN) excels for
its simplicity and effectiveness in multi-class classifi cation.
Random Forest, an ensemble method, is notable for its
capacity to combine decision trees for accuracy. Support Vector
Machine (SVM) handles multi-class tasks effi ciently, while the
Stochastic Gradient Descent Classifi er (SGD) [23] is pragmatic
when combined with a one-vs-all (OvA) strategy. XGBoost
is known for its speed and multi-class support. Deep Neural
Networks (DNNs) are adept at capturing complex patterns.
However, AdaBoost (ADB), effective in binary classifi cation,
may not be ideal for multi-class scenarios. In such cases,
alternative models may offer more straightforward solutions.

To determine the optimal model among the candidates,
we employed a comprehensive assessment framework
encompassing four fundamental evaluation metrics: Accuracy,
F1 Score, Precision, and Recall. These metrics, when used in
conjunction with cross-validation, serve as indispensable tools
for a thorough evaluation of classifi cation models. Accuracy
offers a holistic gauge of predictive correctness, demonstrating
its utility in scenarios characterized by balanced datasets. The
F1 Score strikes a crucial balance between precision and recall,
making it particularly adept at handling imbalanced class
distributions. Precision meticulously assesses the accuracy of

positive predictions, proving invaluable in situations where
false positives carry substantial costs. Meanwhile, Recall
quantifi es a model’s prowess in capturing relevant instances,
a critical measure in contexts where missing positive instances
entails signifi cant consequences. Complementing these
metrics, cross-validation bolsters the robustness of model
assessment by systematically partitioning data, mitigating the
risks of overfi tting, and ensuring reliable generalization.

The selection of an appropriate metric and cross-validation
strategy is contingent upon the specifi c machine-learning task
at hand (Table 1).

Epochs are a crucial aspect of training Deep Neural
Networks (DNNs) [24]. They denote the number of times the
entire training dataset is processed forward and backward
through the network. In our analysis, we employed 5 epochs.
This iterative learning approach serves several essential
purposes. It enables the gradual refi nement of the network’s
internal parameters, ensuring convergence toward an optimal
confi guration for the given task. Multiple epochs are necessary
to avoid overfi tting, promote generalization, and facilitate
learning rate adjustments (Figure 2).

After all parts of the training phases and fi netuning, we
got a clear and reliable accuracy rate of 0.9002 accuracy value.

The introduction of a strong token-locking mechanism and
a reputation-based system inside the smart contract ecosystem
acts as a vital line of protection against possible weaknesses,
notably Sybil attacks. As a preventative precaution, token
locking entails the implementation of a secure protocol that
restricts the transfer or use of tokens for a set period, therefore
limiting the risks associated with illegal token transfers and
potential manipulation.

This protocol is built within the smart contract architecture,
and it makes use of cryptographic methods and consensus
procedures to assure the immutability and transparency of
token transactions. The token locking mechanism functions as
a precaution against fraudulent operations by imposing time-
based limits and preset access rights, boosting the overall
security and trustworthiness of the blockchain-based system.

// SPDX-License-Identifi er: MIT

pragma solidity ^0.8.0;

// Interface for the ERC-20 token contract interface IToken {

function transfer(address recipient, uint256 amount) external
returns (bool);

Figure 2: Avoid overfi tting using Epochs.

078

https://www.peertechzpublications.org/journals/trends-in-computer-science-and-information-technology

Citation: Franciscu SY, Ruggahakotuwa RK, Samarawickrama SWYS, Lahiru JAD (2023) GRIFFIN: Enhancing the security of smart contracts. Trends Comput Sci Inf
Technol 8(3): 073-081. DOI: https://dx.doi.org/10.17352/tcsit.000071

function balanceOf(address account) external view returns

(uint256);

 function allowance(address owner, address spender) external
view returns (uint256);

function transferFrom(address sender, address recipient,

uint256 amount) external returns (bool);

}

// TokenLockContract is a contract that enforces a token lock
requirement

contract TokenLockContract {

 // Contract owner

 address public owner;

// ERC-20 token interface

IToken public token;

// Amount of tokens required to be locked

uint256 public requiredTokens;

// Mapping of user addresses to their locked token amounts

mapping(address => uint256) public lockedTokens;

// Constructor initializes the contract

constructor(address _tokenAddress, uint256 _requiredTokens) {

owner = msg.sender;

token = IToken(_tokenAddress);

requiredTokens = _requiredTokens;

}

// Modifi er that allows only the contract owner to call a function
modifi er onlyOwner() {

require(msg.sender == owner, “Only the owner can call this
function”);

_;

}

// Modifi er that checks if the user has the required locked tokens
modifi er hasRequiredTokens() {

require(lockedTokens[msg.sender] >= requiredTokens,

“Insuffi cient locked tokens”);

_;

}

// Lock tokens by transferring them from the user to this contract
function lockTokens(uint256 amount) external {

require(amount > 0, “Amount must be greater than 0”);

// Transfer tokens from user to contract

require(token.transferFrom(msg.sender, address(this),

amount), “Token transfer failed”);

// Increase the user’s locked token balance lockedTokens[msg.
sender] += amount;

}

// Unlock tokens and transfer them back to the user

function unlockTokens(uint256 amount) external

hasRequiredTokens {

require(amount <= lockedTokens[msg.sender], “Insuffi cient
locked tokens”);

// Decrease the user’s locked token balance

lockedTokens[msg.sender] -= amount;

// Transfer tokens back to user

require(token.transfer(msg.sender, amount), “Token transfer
failed”);

}

// Update the required locked tokens by the contract owner

function updateRequiredTokens(uint256 newRequiredTokens)

external onlyOwner {

requiredTokens = newRequiredTokens;

}

// Get the amount of locked tokens for a specifi c user

function getLockedTokens(address account) external view
returns (uint256) {

return lockedTokens[account];

}

// Example function that requires the user to have the required
locked tokens

function interactWithLockedTokensFunction() external

hasRequiredTokens {

// Your function logic here

}

}

079

https://www.peertechzpublications.org/journals/trends-in-computer-science-and-information-technology

Citation: Franciscu SY, Ruggahakotuwa RK, Samarawickrama SWYS, Lahiru JAD (2023) GRIFFIN: Enhancing the security of smart contracts. Trends Comput Sci Inf
Technol 8(3): 073-081. DOI: https://dx.doi.org/10.17352/tcsit.000071

Token locking mechanism

Simultaneously, the adoption of a reputation-based
mechanism necessitates the construction of a complete system
that assesses and monitors network participants’ behavioral
patterns and transaction histories. This approach distributes
reputation ratings to individual users based on their previous
interactions and adherence to set protocol requirements using
advanced algorithms and data analytics techniques.

By incorporating this reputation score system into the
smart contract ecosystem, it is feasible to differentiate between
legitimate users and potential malevolent actors conducting
Sybil assaults. Users with high reputation scores have expanded
privileges and access to capabilities, whilst those with poor
reputation scores face onerous verifi cation processes and
limited access rights. This strategy provides a trustworthy and
safe environment, establishing a feeling of accountability and
integrity among network users and discouraging malevolent
acts that might jeopardize the blockchain system’s overall
integrity and reliability.

// SPDX-License-Identifi er: MIT

pragma solidity ^0.8.0;

contract WhitelistedFunction {

address public owner;

mapping(address => bool) public whitelist;

constructor() {

owner = msg.sender;

}

modifi er onlyOwner() {

require(msg.sender == owner, “Only the owner can call this

function”);

_;

}

modifi er onlyWhitelisted() {

require(whitelist[msg.sender], “You are not whitelisted”);

_;

}

function addToWhitelist(address account) external onlyOwner {

whitelist[account] = true;

}

function removeFromWhitelist(address account)
external

onlyOwner {

whitelist[account] = false;

}

function whitelistedFunction() external onlyWhitelisted {

// Your function logic here

}

}

Reputation-based mechanism

Results & discussion

Research fi ndings

The research identifi ed a range of common vulnerabilities in
smart contracts, including reentrancy attacks, race conditions,
integer overfl ows, and logical errors. These vulnerabilities
pose signifi cant risks to the security and functionality of smart
contracts. Each vulnerability was assessed for its potential
impact. Findings showed that certain vulnerabilities, such as
reentrancy attacks, can result in substantial fi nancial losses,
while others, like logical errors, may lead to unintended
contract behaviors.

A comprehensive report was created to educate users about
smart contract vulnerabilities. The report explained each
vulnerability in user-friendly language, offering clear and
actionable recommendations for evaluating and engaging with
smart contracts securely.

Future research may explore the integration of machine
learning models to enhance vulnerability detection in smart
contracts. This could automate the identifi cation of new
vulnerabilities and improve the overall security landscape.

There is a need for user-friendly tools that guide smart
contract developers in writing secure code. Such tools can
help prevent vulnerabilities during the development phase and
empower developers to write secure contracts.

The research recognized the growing importance of
ethical considerations, including responsible disclosure of
vulnerabilities and ethical user engagement. It emphasized the
need for an ethical approach within the blockchain community.

Limitations and future work

Several diffi culties and possibilities emerge in the fi eld of
smart contract security. Because of the computational intensity
needed, the scalability of contract analysis is a signifi cant
challenge, particularly in large blockchain networks. The
current tools and infrastructure may struggle to keep up with
the examination of many contracts in an acceptable amount
of time. Furthermore, the complexity of vulnerabilities is a
continuing problem, since developing sophisticated attacks
may outstrip existing research on common fl aws. Encouraging
user adoption of security practices is a continuous problem
since behavioral change is slow and resistant to rapid
transformation. The study emphasizes the relevance of legal

080

https://www.peertechzpublications.org/journals/trends-in-computer-science-and-information-technology

Citation: Franciscu SY, Ruggahakotuwa RK, Samarawickrama SWYS, Lahiru JAD (2023) GRIFFIN: Enhancing the security of smart contracts. Trends Comput Sci Inf
Technol 8(3): 073-081. DOI: https://dx.doi.org/10.17352/tcsit.000071

concerns without giving navigational assistance within the
shifting legal environment, which adds another degree of
complexity.

Furthermore, the study briefl y mentions privacy risks
related to smart contracts, implying that future research
should dive deeper into their infl uence on privacy, especially
when sensitive data is involved. In the future, researchers
may investigate the use of formal verifi cation techniques for
smart contracts, providing mathematical proof of correctness
to prevent vulnerabilities. The creation of user-friendly tools
to assist programmers in designing safe smart contracts is an
area ripe for innovation, aligning with a proactive approach to
vulnerability avoidance throughout the development stage.

Conclusion

In conclusion, this work has proposed a thorough method
for strengthening smart contract security in the context of
dynamic decentralized systems. Our study has highlighted
the need to emphasize integrity and trustworthiness in smart
contract creation by tackling crucial high-risk areas such
as Integer Overfl ow, Dangerous Delegate Calls, Timestamp
Dependency, Reentrancy Vulnerabilities, Race Conditions, and
Sybil attacks.

According to this comprehensive study, Machine Learning
is the most suitable method to analyze smart contracts. To
counter those vulnerabilities, we have built a web application
using Python Flask that has smart contracts analyzing
capability. The developer may upload a solidity fi le or copy
the solidity code to our portal. Then the web application will
give detailed results on whether that contract is vulnerable or
not and the user has the capability to get those results in pdf
format, if it is vulnerable; what the vulnerability is, which code
section it placed and it recommends online sources to resolve
the weakness of the contract.

Recognizing a gap in the market for specialized tools
for real-time vulnerability identifi cation and mitigation
advice, our team developed the ‘GRIFFIN’ - Smart Contracts
Vulnerability Detector. We have proved the effi ciency of
GRIFFIN in proactively fi nding and mitigating vulnerabilities
across a varied dataset of 12,000 real-world solidity smart
contracts through rigorous testing and validation. GRIFFIN
has demonstrated improved accuracy rates by leveraging
cutting-edge static analysis techniques and machine learning
algorithms, enabling developers, and increasing the overall
robustness of smart contract ecosystems.

The emphasis on a practical, user-centric solution is central
to our study. GRIFFIN facilitates rapid and effective vulnerability
remediation by providing developers with actionable insights,
code snippets, and real-time feedback. This method not only
makes a substantial contribution to the creation of strong smart
contract ecosystems, but it also develops a culture of security-
conscious development practices. We are certain that by using
these techniques, we will be able to assure the smooth and
dependable operation of smart contracts inside decentralized
systems, hence increasing overall trust and reliability.

By adopting these mitigation strategies, developers can
signifi cantly improve the security, integrity, and resilience of
smart contract systems. These measures proactively address
risks, instilling confi dence in decentralized applications and
blockchain ecosystems. Our study contributes to fostering
safer and more reliable blockchain networks and decentralized
applications.

Acknowledgment

We extend our heartfelt appreciation to all those who
contributed to the completion of this research study. Our
gratitude goes to the individuals and organizations that
provided valuable insights, guidance, and resources throughout
the research process. We are thankful for the support from
our mentors and advisors, whose expertise and feedback were
instrumental in shaping this study.

We would also like to acknowledge the participants
who willingly shared their perspectives and experiences,
contributing to a deeper understanding of the subject matter.
Additionally, we are grateful for the research facilities and
technological resources that enabled the successful execution
of our experiments and analyses.

Finally, we express our gratitude to the academic
community for fostering an environment of learning and
discovery. Through this research, we hope to make a meaningful
contribution to the fi eld and inspire further advancements in
the realm of smart contract security.

References

1. Wood G. Google Scholar. 2014. https://cryptodeep.ru/doc/paper.pdf.

2. IBM. IBM. https://www.ibm.com/topics/smart-contracts.2023.

3. ConsenSys. GitHub. https://github.com/ConsenSys/mythril.

4. Cai W, Wang Z, Ernst JB, Hong Z, Feng C, Leung VCM. Decentralized
Applications: The Blockchain-Empowered Software System. in IEEE. 2018.

5. Olickel H. Oyente: Making Smart Contracts Smarter. Academia. https://www.
academia.edu/28735174/Oyente_Making _Smart_Contracts_Smarter.

6. Mossberg M, Manzano F, Hennenfent E, Groce A, Grieco G, Feist J. Manticore:
A User-Friendly Symbolic ExecutionFramework for Binaries and Smart
Contracts. in IEEE/ACM. 2019.

7. Trailofbits. trailofbits/manticore. https://github.com/trailofbits/manticore/.

8. Tsankov P, Dan A, Drachsler-Cohen D, Gervais A, Bünzli F, Vechev M. Securify:
Practical Security Analysis of Smart Contracts. in ACM. 2018.

9. eth-sri/securify2. https://github.com/eth-sri/securify2.

10. Feist J, Grieco G, Groce A. Slither: A Static Analysis Framework for Smart
Contracts. arXiv. 2019.

11. Shubhani Aggarwal NK. Chapter Twenty - Attacks on blockchain. Advances in
Computers. 2021; 121: 399-410.

12. Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts,
CNN architectures, challenges, applications, future directions. Journal of Big
Data. 2021; 8: 53.

13. Zhang Y. Support Vector Machine Classifi cation Algorithm and Its Application.
in ICICA 2012. 2012.

081

https://www.peertechzpublications.org/journals/trends-in-computer-science-and-information-technology

Citation: Franciscu SY, Ruggahakotuwa RK, Samarawickrama SWYS, Lahiru JAD (2023) GRIFFIN: Enhancing the security of smart contracts. Trends Comput Sci Inf
Technol 8(3): 073-081. DOI: https://dx.doi.org/10.17352/tcsit.000071

14. Guo G. KNN Model- Based Approach in Classifi cation. in OTM 2003. 2003.

15. Chengsheng T, Huacheng L, Bing Xu. AdaBoost typical Algorithm and its
application research. in MATEC Web of Conferences. 2017.

16. Breiman L. Random Forests. Machine Learning. 2001; 45: 5-32.

17. Dhieb N, Ghazzai H, Besbes H, Massoud Y. Extreme Gradient Boosting
Machine Learning Algorithm For Safe Auto Insurance Operations, in 2019 IEEE
International Conference on Vehicular Electronics and Safety (ICVES). 2019.

18. Qian P. Messi-Q. https://github.com/Messi-Q/Smart-Contract- Dataset/blob/
master/README.md#smart-contractdataset.

19. Qian P. https://scholar.google.com/citations?user=ic5pZxEAA AAJ&hl=en.

20. Ethereum Whitepaper. h t t p s : / / e t h e r e u m . o r g / e n /
whitepaper/.

21. imbalanced-learn. https://imbalanced-learn.org/stable/.

22. scikit-learn. https://scikitlearn.org/stable/modules/generated/
sklearn.feature_ext raction.text.Tfi dfVectorizer.html.

23. Amari Si. Backpropagation and stochastic gradient descent method.
Neurocomputing. 1993; 5:185-196.

24. Yi H. Shiyu S, Xiusheng D, Zhigang C. A study on Deep Neural Networks
framework, in 2016 IEEE Advanced Information Management. Communicates,
Electronic and Automation Control Conference (IMCEC). 2016.

https://www.peertechzpublications.org/submission

