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Introduction

There are many methods and approaches [1-14] for pattern 
recognition used for speaker recognition (identifi cation and 
verifi cation). However, each approach has its advantages 
and limitations. In order to use the advantages of several 
methods, a hybrid system for speaker verifi cation, based on 
different approaches for pattern recognition is proposed. The 
recognition is made by means of four different recognition 
methods (classifi ers): 

1) Prototype distribution map (PDM) [8,9].

2) AR-vector model (ARVM) [2-4,10,13].

3) Two-level classifi er: PDM and multilayer perceptron 
network [9].

4) Gaussian speaker’s models combined with the 
arithmetic-harmonic sphericity measure (GMAHSM) 
[4,7,13,14].

These classifi ers provide four preliminary decisions 
(classifi cations). The reliability and confi dence of these 
preliminary decisions are evaluated by means of a weighting 
algorithm. The weights are assigned using the relative 
measures to the most similar speakers (or cohorts), i.e. a 
cohort normalization technique is implemented. The fi nal 
classifi cation then is done on the base of simple logical and 
threshold rules.

Evaluation of the feature vectors (speech 
parameters) 

In order to minimize the errors during the speech 
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parameters evaluation, the following procedure for speech 
analysis is proposed and used:

Segmentation of the speech signal

The quantized signal is divided into segments with length 
of three ‘To’ using a Hamming window. The duration of the 
segments is dynamically adapted to 3 To (using ‘To’ from the 
previous segment), because our experiments [15] have shown 
that such segment’s length is optimal for ‘To’ evaluation. The 
overlapping between the segments is two pitch periods in order 
to analyze the dynamics of the speech parameters. The length 
of the fi rst segment is 30ms in order to ensure that the window 
contains at least two To.

Periodicity/aperiodicity separation

The periodicity/aperiodicity separation (PAS) is very 
important for correct To detection (because errors in PAS will 
produce drastic errors in To) and for correct evaluation of the 
speech parameters. To minimize the number of errors in PAS 
the detector proposed in [16] is implemented, because it is 
characterized by:

1. Parallel analysis of the speech in time, spectral and 
cepstral domains. In this way different characteristics 
of the signal in these domains are used and the signal 
is analyzed more completely and from different 
viewpoints. 

2. Realization of robust PAS by means of multilayer 
perceptron (MLP) neural network. As a result the 
accuracy is improved, because the MLP are characterized 
by good discriminant capabilities and high classifi cation 
power.

In order to minimize the infl uence of the noisy components 
the aperiodic segments are eliminated.

Pitch period (To) evaluation 

In order to evaluate correctly To the robust hybrid pitch 
detector [17] is used because it has the following useful 
properties:

a) Rejects practically most of the segments, where To is 
wrongly evaluated (experimental research over 200 
speakers [15] when the signal is preprocessed by the 
PAS detector [16]. However it eliminates up to 1% of the 
voiced segments. The loss of these segments may be 
tolerated, because for all the speakers (in our database) 
the analyzed sentences are relatively longer and always 
contain more than 200 segments.

b) Evaluates correctly To from clean, noisy and telephone 
speech;

c) Realizes parallel analysis of the speech signal in 
temporal, spectral and cepstral domains;

d) Evaluates the pitch period by means of logical analysis 
of the results from these three domains.

For every p-th segment (containing 3 To) the mean pitch 
period (Tom(p)) is calculated.

Cepstral analysis (over the voiced segments)

Many experimental studies [5,18-20] have shown that the 
LP-derived cepstral coeffi cients (c(n)) are very informative 
for speaker recognition. In the proposed approach the c(n) 
are calculated for voiced segments in order to minimize the 
infl uence of the noisy components. The cepstral analysis is 
carried out by means of the standard procedure LPC analysis 
by means of the autocorrelation method [21] and then the fi rst 
16 LPCC coeffi cients are calculated. The number of c(n) is 16, 
because our experimental research [15] has shown that the fi rst 
16 coeffi cients are the most informative for speaker recognition 
for our database.

Evaluation of the group delay function (for the voiced 
segments)

It is known [15,22] that the analysis of spectrograms and 
sonograms (representing the formant structure) is very useful 
for speaker recognition. However, the estimation of formants 
remains a diffi cult problem that is not yet fully solved. 
That is why the formant structure is analyzed by evaluation 
and analysis of the group delay function (GDF) (GDF is the 
negative derivative of the phase spectrum). The GDF is used for 
approximation of the formant structure, because the GDF has 
the following useful properties [23]:

1. The GDF is proportional to the squared magnitude 
response near resonances (formants) and approaches 
zero asymptotically for frequencies away from the 
frequency of the resonator. In this way the formants are 
represented by distinct and sharp peaks in the GDF.

2. The vocal tract may be represented by a cascade of 
resonators. The GDF of such system is the sum of 
GDFs of these resonators. As result the infl uence of one 
resonator to another is minimized - even closely spaced 
formants are represented in the GDF by separated peaks.

The main problems in calculation of the GDF are:

1. The phase function is warped by the presence of zeros 
near the unit circle and the signal windowing prior to 
the spectral analysis [23].

2. Most methods for phase unwrapping do not yield 
satisfactory results [24-27].

3. The spectral resolution in the GDF for medium and high 
pitched voices (To < 5 ms and Fo > 200 Hz), when GDF 
is calculated from c(n), is decreased. This is due to the 
short To minimizing the number of c(n) and respectively 
the number of GDF coeffi cients (gdf(i)). For To, shorter 
than 5 ms the spectral resolution will be less than 262 
Hz, because in our experiments the sampling rate is 21 
KHz.

4. Distortions (represented in most of the cases by extra 
peaks) caused by the infl uence of the glottal source.
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In order to solve these problems and to guarantee spectral 
resolution higher than in the standard wide band sonogram 
used for formant analysis (here 262 Hz), the following approach 
for GDF calculation is proposed and used:

A) Analysis of low pitched voices: For such voices the GDF 
is calculated indirectly (without phase calculation and 
unwarpping) from c(n) - detailed proof is given in [23]. 
In order to minimize the infl uence of the glottal source 
only the cepstral coeffi cients (cv(n)) corresponding 
to the vocal tract are separated by means of liftering. 
The length (L) of the lifter is less than To. The value 
of L = 0.8To, because our experiments [15] have shown 
that such a length is suffi cient for suppression of the 
infl uence of the glottal source. The GDF is calculated 
by means of the formulae described in (Murthy, 1989) 
from the liftered c(n).

B) Analysis of high pitched voices: For such voices the 
GDF is calculated by means of the following procedure 
described in (Duncan, 1989):

a) Transformation of the voiced speech into minimum 
phase signal;

b) Direct calculation of the phase spectrum from this 
minimum phase signal;

c) Calculation of the fi rst derivative of the phase spectrum 
- the GDF.

Unfortunately, for high-pitched voices, the infl uence of 
the glottal source is not suppressed. However, in most of the 
practical cases during speaker recognition male voices are 
analyzed, generally characterized with low values of the pitch 
period.

The fi rst S gdf(i) coeffi cients (for I = 1,...,S) are used as 
feature vectors representing the formant structure. The value 
of S is determined on the basis of baseband (300–3000 Hz) 
of the phone lines, because one of the main applications of 
this system will be speaker recognition over phone lines. To 
cover this spectral range the value of S is 12, because in our 
experiments the resolution in the GDF is 262 Hz.

Formation of the input vectors

The following input vectors are formed for every p-th (for 
p = 1,...,P) voiced segment: mean pitch period (Tom(p)); fi rst 16 
c(i) and the fi rst 12 gdf(i).

The multi-method approach for pattern 
recognition

Four methods for speaker recognition are used and for 
all these methods the measures (scores) - similarities or 
distances, are calculated to all the speakers, i.e. besides to the 
verifi ed speaker. These scores are used in the fi nal verifi cation 
scheme for cohort normalization.

In order to use different statistical characteristics, the static 
and dynamic information of the speech parameters in the 

system are captured using the following methods for speaker 
recognition: 

The prototype distribution map (PDM) - detailed des-
cription in [8,9,15]

The PDM is used because [9,15]:

a) The PDM’s neurons try to imitate the probability density 
function (pdf) whatever complex the form of the pdf is;

b) Less signifi cant neurons in the PDM are eliminated by a 
fi ltering procedure. 

Training the PDM: For each of the M speakers from the 
database a PDM(m), (m = 1,...M, M-number of known speakers) 
is formed using the training procedure [8] For every k-th 
available utterance of a given speaker one separate PDMk(m) 
is formed.

Speaker verifi cation: The following classifi cation procedure 
is used:

a) formation and fi ltering of the PDMU of the unknown 
speaker (speaker U);

b) calculation of the similarities (Sim(m)) between the 
PDMU and each PDM(m) by means of the measure 
proposed in [8];

c) The speaker U is preliminary accepted as the speaker l 
to whom he has maximal value of Sim(m). This speaker 
could be different from the speaker c, who he claimed 
to be (in case of separately used method that means 
-rejection).

The AR-vector models (ARVM) - detailed description in 
[3,10,13]

The ARVM are used because they allow modeling speaker’s 
specifi c information even when the segments with features 
vectors are analyzed in a random order [3,10,13].

Training the ARVM: During the training for all the speakers 
their ARVM(m) are formed using the procedure [3]. 

Speaker verifi cation: The classifi cation is done by 
formation of the ARVM of the unknown speaker—ARVM(U) 
and calculation of the forward–backward symmetrized Itakura 
distances [3] between ARVM(U) and all ARVM(m). The speaker 
U is preliminary accepted as the speaker l to whom he has 
minimal Itakura distance. This speaker could be different from 
speaker c, who he claimed to be (in case of separately used 
method that means -rejection).

The Gaussian speaker’s models combined with the 
arithmetic-harmonic sphericity measure (GMAHSM) - 
detailed description in [4,14]

The Gaussian mixture speaker’s models are used because:

a) These models allow robust speaker recognition when 
noisy and telephone speech signals are analyzed [14].
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b) The Gaussian speaker’s models may be combined with 
the arithmetic-harmonic sphericity measure - AHSM 
[4]. This measure is useful for speaker recognition 
because:

The AHSM is symmetric and is evaluated effi ciently, 
without extracting the eigenvalues.

The AHSM allows speaker recognition with minimal error 
in comparison with other measures when noisy speech signals 
are analyzed [4].

Training: The covariance matrices (COV(m)) for the 
speakers are calculated.

Speaker verifi cation: The covariance matrix (COV(U)) of the 
unknown speaker (U) is calculated. The ASHM between all the 
speakers and the unknown speaker are evaluated. The speaker 
U is preliminary accepted as the speaker l to whom he has the 
minimal AHSM distance. This speaker could be different from 
speaker c, who he claimed to be (in case of separately used 
method that means - rejection).

The two level classifi er - detailed description in [8,9,15]

The two-level classifi er incorporates the pdf’s estimating, 
statistical modeling and compressing powers of the PDM with 
the discriminant capabilities and classifi cation power of the 
MLP. As a result the classifi er is better than either PDM or 
MLP, especially in the case of noise-corrupted signals.

A. The fi rst level of the classifi er consists of several (T, 
T > 1) PDMs. The reason for building T PDMs is that 
the BP provides “good” estimates of Bayes a posteriori 
probability functions only if the MLP has enough 
fl exibility to closely approximate the Bayes functions 
and there is suffi cient training data. 

Training: A single PDM could not adequately train the 
MLP and that is why for each speaker’s utterance its PDMs are 
trained.

Speaker verifi cation: During this stage for the unknown 
speaker U, its PDMus are obtained.

B. The second level of the classifi er, consists of a MLP. 
The MLP (for each speaker) are trained using the 
above mentioned PDMs. The MLPs are trained with 
supervision using the back-propagation (BP) algorithm, 
which minimizes the squared error between the actual 
outputs of the network and the desired outputs. 

Training: The input feature vectors (the PDMs) of a 
given speaker are labeled as “one” and feature vectors of the 
remaining speakers as “zero”. 

Speaker verifi cation: All the test vectors for an unknown 
speaker (the PDMus) are applied to each MLP. The outputs 
of the MLP of every speaker are accumulated. The speaker 
is preliminary accepted as the speaker l if the corresponding 
MLP(l) is with the maximum accumulated output. This speaker 
could be different from speaker c who he claimed to be (in case 
of separately used method that means - rejection).

The architecture of the used MLP networks is with two 
hidden layers and one output and the nodes have sigmoid 
nonlinearities.

Final (hybrid) verifi cation scheme

The following procedure for fi nal decision is proposed and 
used:

Evaluation of the functions of the cohort score(s) for the 
classifi ers: The following procedure for assigning of classifi er’s 
weights is proposed and used:

Each classifi er’s decision gets a labeled weight Wl (i) (for i 
= 1,2,3,4, corresponding to methods 1,2,3 and 4) according to 
the formulae:

wl(i) = fl(CS)/ VS(i),                   (1)

for I = 2,4 

wl(i) = VS(i) /fl(CS),               (2)

for I = 1,3 

where: 

fl(CS) - function of the cohort score(s) for the i-th classifi er;

VS(i) - the preliminary verifi cation score; 

i - argument (label) of Dmin in methods 2 and 4, and Smax 
in methods 1 and 3. 

The result (output) for methods 2 and 4 is two minimal 
distances (Dmin), and for methods 1 and 3, two maximal 
similarities (Smax). In order to preserve the same relative 
values of the weights, the weights for the methods 1 and 3 are 
inverted. As a result the functions of the cohort scores (f(CS)) 
are evaluated by means of the following algorithm:

fl(CS) = min (cohort scores), for I = 2,4                 (3)

Calculation of the averaged sum of N minimal cohort scores 
(for I = 2, 4):

N

1

1f1(CS) CSj
N j

  ,                (4)

F1(CS) = max (cohort scores), for I = 1, 3                (5)

Calculation of the averaged sum of N maximal cohort 
scores:

N

1

1f1(CS) CSj
N j

  ,                     (6)

Normalization of classifi er’s weights

   
4

l l

1
W i    w i / l

i
i
w



                   (7)

where: for i = 1,2,3,4.

Final decision by means of specifi c rules: The following 
specifi c rules for fi nal decision are proposed and applied:
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Let us assume that the speaker under verifi cation is the c-th 
speaker. In general, as mentioned above the label l in wi

l could 
be different from c . Then the fi nal decision is made according 
to the rules:

A. Successful verifi cation (acceptance):

if at least two classifi cation methods accept the speaker 
under verifi cation, 

i.e. li = c and 
4

1
  0.5c l c

i
i

w w 



   then the verifi ed speaker is 
accepted.

B. Rejection:

if only one method accept the speaker under verifi cation or 
4

1
  0.5c l c

i
i

w w 



   then the verifi ed speaker is rejected.

Experimental research

In order to make a comparison between the implemented 
methods in the system and their application to different speech 
conditions, experiments with clean and noisy speech data have 
been carried out.

The speech data base

A proprietary dataset was used. The speech (clean and over 
telephone lines in order to account for telephone channel effects 
and noise) of 92 speakers (48 males and 44 females) have been 
analyzed. The signals are digitized with 21 KHz and 16 bits 
per sample using the standard audio board “Sound Blaster” 
of the PC and saved directly into the computer’s memory in 
order to avoid any distortions caused by the recorders. The 
training set consists of utterances of the 3 sentences (training 
sentences): My name is fi rst name, second name, family name; 
My code is six digits; I am a(n) profession. The test set consists 
of utterances of another 3 test sentences: I am two digits years 
old; My mother’s name is fi rst name; My hobby is up to three 
words. Note that the proposed system is for text-independent 
speaker verifi cation. All these sentences were uttered once 
(in Bulgarian) in the abovementioned two conditions by each 
speaker in six separate sessions, i.e. we have 552 utterances in 
clean and 552 utterances over telephone in noisy condition. For 
test of the system Leave-one-out cross-validation (LOOCV) 
has been applied. The training set is formed by the utterances 
of the training sentences of 91 speakers. The test set is formed 
by the utterances of test sentences of all 92 speakers, i.e. the 
test set always include one impostor. According to LOOCV that 
scheme is repeated 92 times. 

Practical implementation of the methods

For the PDM method, the optimal values were used for the 
fi lter coeffi cient (k) and for the size (Q) the PDMs found in the 
experimental researches [8,15]: k = 0.1 and Q = 20.

For the ARVM method the order of AR-Vector Models was 2, 
because it is shown that for orders greater than 2, the prediction 
error does not decrease signifi cantly [13](Montacie,1993; Le 
Floch,1994).

For the Two-level classifi er are used the optional values for 
the number of PDMs (T), k and for Q found in the experimental 
researches [9,15]: k = 0.1, T = 10 and Q = 4. The architecture of 
the MLP for each speaker at the second level is: fi rst hidden 
layer - 34 neurons, second - 2 and output layer - 1 neuron.

In our experiments we apply the functions f(CS) in the 
forms (3), (4) with N = 3, and (5), (6) also with N = 3.

Results and conclusions

The results are given in Table 1. It is important to note that 
almost all the impostors are eliminated. The proposed hybrid 
classifi er has improved verifi cation accuracy due to:

1. Combination of the advantages of four different 
methods.

2. The discriminating capabilities and classifi cation power 
of MLP.

3. The PDMs, in fact, perform a transformation and 
dimensionality reduction and the fi ltering procedure 
rejects the sporadically (noncharacteristic) activated 
locations.

4. The use of the weighting procedure with a cohort 
normalization technique implemented. This algorithm 
gives higher weights to the methods for which the ratios 
(scores for the speaker under verifi cation to the cohort’s 
scores) are higher. That means that higher weights are 
given to the more reliable and confi dential classifi ers.

As fi rst step of our research was to show that weighted 
(on the base of their cohort scores) combination of various 
methods that use different statistical characteristics of the 
speech parameters enhance the capability of a system to 
recognize with higher accuracy. Robust impostor detection 
was observed, as no case occurred where all classifi ers failed 
simultaneously. Future work will be devoted to apply this 
approach to other publicly available data sets and to explore it 
in worse background conditions like signifi cant noise, spoofi ng 
and adversarial actions. Attention will be paid also to improve 
computational effi ciency.

Table 1: The Equal Error Rate (EER %) in speaker verifi cation for COV-AHSM, ARVM, 
PDM, PDM-MLP and the proposed HYBRID METHODS. False Acceptance Rate (FAR) 
and False Rejection Rate (FRR) are also given.

METHOD

ERROR COV -AHSM ARVM PDM PDM + MLP HYBRID

FAR% 
FRR %

2.72
2.36

3.08
2.71

1.81
2.18

0.90
1.26

0.54
1.26

EER % 2.54 2.89 2 1.08 0.90
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