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Introduction 

In military applications, geofenced robots can be deployed 
along the perimeter of military bases and installations to 
enhance security. By restricting their operations to defi ned 
boundaries, these robots can autonomously patrol the area, 
detect intruders, and respond to security breaches. Non-
geofenced robots may pose security risks if they can access 
sensitive or restricted areas. Unauthorized access to critical 
infrastructure or classifi ed zones could be a signifi cant 
concern. Managing and controlling non-geofenced robots can 
be more complex, as their movements are less predictable. 
This complexity may require more sophisticated planning and 
monitoring. In environments where there are potential safety 
hazards or risks, non-geofenced robots may require more 
robust safety mechanisms and fail-safes to prevent accidents. 

This project is aimed at developing a compact robot that can 
guard a designated Area. To stay within an area, security 
personnel use mapping software to create a geo-fenced 
perimeter [1]. The robot then moves and detects objects using 
a Light Detection and Ranging (LIDAR) sensor, which emits 
a laser in a 360-degree sweep every 25 milliseconds around 
the robot. This creates a point cloud, such as a 3-D image of 
the surroundings showing the objects within the geo-fenced 
area. Unlike the GPS in your smartphone, which fi nds locations 
within a few meters from you, this robot uses a differential 
GPS that fi nds objects within a few centimeters. That helps the 
robot know exactly where it’s moving at all times. It makes 
use of the scan and pose data from LIDAR to serve the purpose. 
Digital twinning allows real-time monitoring of the robot’s 
physical environment through a virtual model [2,3]. Security 
personnel can remotely control the robot and receive live data. 
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Surveillance robots provide troops with real-time information about their surroundings, including enemy positions, terrain, and potential threats. This information 
is invaluable for making informed decisions and ensuring the safety of military personnel. Geo-fenced robots are robots equipped with technology that restricts their 
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in fi ne detail using 3D point clouds by measuring distances using laser pulses. Here we make use of RPLIDAR A1 M8 and acquire data from it using ROS with the help of 
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This enables them to respond to security incidents or conduct 
surveillance from a central location. The digital twinned robot 
is given with the occupancy grid which serves as its geofenced 
area. The location of the existing geographic structure that 
the robot might consider as an obstacle is also given in the 
occupancy grid. Thus, if there exists an obstacle other than 
these, then the robot takes an alternate path to move toward 
the target.

Related works

A literature survey is the most important step in a 
project development process. Before developing the tool, 
it is necessary to determine the time factor, economy, and 
company’s strength. Once these things are satisfi ed, then 
the next steps are to determine which operation system and 
hardware components are needed for the development of the 
project. Before developing the project, the people need external 
support. This external support can be taken from books or 
websites.

A. Ramesh, in a paper published in 2013 [4], described an 
autonomous robot as a machine able to extract information 
from its environment and use knowledge about its world to 
move safely in a meaningful and purposive manner. The 
trajectory tracking task in non-holonomic systems can be 
performed through differentiable control laws. The most 
important feature of this work is that the complete modelling 
and control are done in SIMSCAPE software which employs 
a physical network approach that differs from the standard 
SIMULINK modelling approach and is particularly suited to 
simulate systems that consist of real physical components. 
Thus, modelling is done with MATLAB- SIMSCAPE in which 
physical units for parameters and variables and all unit 
conversions are handled automatically.

 M. B. Emara, A. W. Youssef, M. Mashaly, J. Kiefer, L. A. 
Shihata, and E. Azab, in the paper published in Jan. 2022 
[5], briefed about a digital model for a three-wheeled 
omnidirectional robot is created. This robot can potentially be 
used in various industrial applications as it can move quickly 
in any direction from any confi guration. A simulation program 
- SIMSCAPE a MATLAB-based library - is used for creating 
a digital twin model for the robot. A hardware prototype is 
manufactured and a PID controller is used to measure and 
validate the performance of the proposed digital model. Digital 
twined models are created using real-time simulation software, 
in which multiple aspects are studied regarding the system’s 
control and modelling to ensure that the implementation of the 
robot in real life is as cost-effi cient and error-free as can it be. 

Luigi Girletti; Milan Groshev; Carlos Guimarães; Carlos 
J. Bernardos Universidad Carlos III de Madrid, Antonio de la 
Oliva in the paper published in Mar. 2021 [6] had Digital 
Twin as one of the use cases targeted by the fourth industrial 
revolution (Industry 4.0), which, through the digitalization 
of the robotic systems, will enable enhanced automation and 
remote controlling capabilities. Building upon this concept, 

this work proposes a solution for an Edge-based Digital Twin 
for robotics, which leverages the cloud-to-things continuum 
to offl oad computation and intelligence from the robots to 
the network. This imposes stringent requirements over the 
communication technologies which are fulfi lled by relying on 
5G. 

Methodology

ROS provides the infrastructure and tools needed to create 
and manage digital twins, especially in the context of robotic 
and autonomous systems, where sensor data, control, and 
communication are key components of the twin’s functionality 
[7]. ROS packages and updates are primarily designed and tested 
for Ubuntu. ‘roscore’ will provide the central communication 
and naming services needed for your ROS nodes to interact 
with each other. A Catkin workspace is a directory structure 
where you organize and manage your ROS packages. All these 
are confi gured and all the required packages and tools are 
installed. Then if the LIDAR sensor requires specifi c drivers, 
you’ll need to confi gure and launch them. Create a launch fi le 
that launches your LIDAR node and any other nodes required 
for your application [8,9]. Launch RViz and confi gure it to 
visualize the LIDAR data. Open Simulink, create a new model 
and save it. Confi gure the simulation parameters, such as 
the simulation time, solver settings, and stop time. Once 
the simulation is complete, you can observe and analyse the 
response in the visualization blocks you added. This fl ow is 
described in the Figure 1.

As mentioned in the methodology here two laptops are 
used. One for the master in which ‘roscore’ runs (one on the 
left side) and the other one in which the Simulink model is 
developed and receives data from the master. The Lidar (RP 
Lidar A1 M8) is connected to the Raspberry Pi controller. This 
Lidar is the one that publishes the required data.

Figure 1: Flow Chart of the process. 
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Implem entation

Digital twinning is a technology that involves creating a 
virtual, digital replica or representation of a physical object, 
system, or environment. Software plays a crucial role in the 
implementation of digital twinning, as it is responsible for 
modeling, simulating, and connecting the digital twin to its 
physical counterpart. For digital twins of systems with control 
systems, simulators like MATLAB/Simulink are used to model 
and simulate the control algorithms and their interactions with 
the physical system [10].

Software implementation

A. Developing a simulink model: This example uses a 
model that implements a post-obstacle avoidance path 
controller. The controller receives robot position and 
laser scanning data from the simulated robot and sends 
velocity commands to guide the robot along a specifi c 
path. You can adjust parameters while the model 
is running and observe the effect on the simulated 
robot. The model is divided into four subsystems. The 
following sections explain each subsystem [11].

Process inputs: The ‘Inputs’ subsystem processes all 
the inputs to the algorithm. There are two subscribers to 
receive data from the simulator. The fi rst subscriber receives 
messages sent on the /scan topic. The laser scan message is 
then processed to extract scan ranges and angles. The second 
subscriber receives messages sent on the /ground_truth_pose 
topic. The (x,y) location and Yaw orientation of the robot are 
then extracted from the pose message.

Compute Velocity and Heading for Path Following: The 
‘Compute Velocity and Heading for Path Following’ subsystem 
computes the linear and angular velocity commands and the 
target moving direction using the Pure Pursuit block. The 
pure pursuit algorithm was originally devised as a method for 
calculating the arc necessary to get a robot back onto a path. 
Pure pursuit is a tracking algorithm that works by calculating 
the curvature that will move a vehicle from its current position 
to some goal position. The whole point of the algorithm is 
to choose a goal position that is some distance ahead of the 
vehicle on the path.

Adjust Velocities to Avoid Obstacles: The ‘Adjust Velocities 
to Avoid Obstacles’ subsystem computes adjustments to the 
linear and angular velocities computed by the path follower. 
The Vector Field Histogram block uses the laser range readings 
to check if the target direction computed using the Pure Pursuit 
block is obstacle-free or not based on the laser scan data. If 
there are obstacles along the target direction, the Vector Field 
Histogram block computes a steering direction that is closest 
to the target direction and is obstacle-free. The Vector Field 
Histogram block is also located in the Mobile Robot Algorithms 
sub-library. The steering direction is NaN value when there are 
no obstacle-free directions in the sensor fi eld of view. In this 
case, a recovery motion is required, where the robot turns on 
the spot until an obstacle-free direction is available. Based on 
the steering direction, this subsystem computes adjustments 
in linear and angular velocities.

Send Velocity Commands: The ‘Outputs’ subsystem 
publishes the linear and angular velocities to drive the simulated 
robot. It adds the velocities computed using the Pure Pursuit 
path following the algorithm with the adjustments computed. 
The fi nal velocities are set on the geometry_msgs/Twist 
message and published on the topic /mobile_base/commands/
velocity. This is an enabled subsystem that is triggered when a 
new laser message is received. This means a velocity command 
is published only when new sensor information is available. 
This prevents the robot from hitting obstacles in case of a delay 
in receiving sensor information.

B. ROS in Raspberry Pi: Robot Operating System (ROS) is 
a commonly used framework for designing complex 
robotic systems. It is popular for building distributed 
robot software systems, as well as for its integration 
with packages for simulation, visualization, robotics 
algorithms, and more. ROS has become increasingly 
popular in industry as well, especially in the 
development of autonomous vehicles [12,13]. ROS + 
Raspberry Pi is such a powerful combination to create 
smart robots, with a somehow low cost, and very small 
electronic board embedded in the robot. The “default” 
operating system for Raspberry Pi is Raspbian. However, 
if you want to use ROS, you’d be better served by using 
an Ubuntu version for the Pi. Installing ROS packages 
and managing them on Raspbian can be quite diffi cult, 
whereas on Ubuntu it’ll work almost out of the box, just 
like on a standard computer or laptop.

C. ROS Network: A Robot Operating System (ROS) is a 
communication interface that enables different parts 
of a robot system to discover each other, and send and 
receive data between them [14]. MATLAB® supports 
ROS with a library of functions that enables you to 
exchange data with ROS-enabled physical robots or 
robot simulators. ROS Toolbox provides an interface 
connecting MATLAB and Simulink with the Robot 
Operating System (ROS and ROS 2). With the toolbox, 
you can design a network of ROS nodes and combine 
MATLAB or Simulink-generated ROS nodes with 
your existing ROS network [15]. The toolbox includes 
MATLAB functions and Simulink blocks to visualize and 
analyze ROS data by recording, importing, and playing 
back rosbag fi les. The toolbox lets you verify ROS nodes 
via desktop simulation and by connecting to external 
robot simulators. Use the ROS Logger app to record ROS 
messages during Simulink® simulation, and obtain a 
rosbag fi le with fully synchronized ROS messages saved 
during simulation [16-18].

D. HECTOR SLAM package: hector_mapping is a SLAM 
approach that can be used without odometry as well as 
on platforms that exhibit roll/pitch motion. It leverages 
the high update rate of modern LIDAR systems. To use 
hector_mapping, you need a source of sensor_msgs/
LaserScan data. The node uses tf for the transformation 
of scan data, so the LIDAR does not have to be fi xed 
related to the specifi ed base frame [19]. hector_mapping 
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is a node for LIDAR-based SLAM with no odometry 
and low computational resources. LIDAR scan data 
may include information about the angular resolution, 
which determines how densely measurements are taken 
within the sensor’s fi eld of view. The higher angular 
resolution provides more detailed data. The number 
of individual measurements or scan points in a LIDAR 
scan depends on the LIDAR sensor’s characteristics and 
settings Figure 2.

Hardware  implementation

In this project, the acquisition and processing of LiDAR 
data were enabled by ROS (Robot Operating System) on a 
Raspberry Pi, with seamless integration into MATLAB. The 
hardware plays a crucial role in connecting the digital twin 
to its physical counterpart, collecting data from sensors, and 
controlling the physical system. This innovative hardware-
software synergy allowed for the collection of precise LiDAR 
data and the utilization of MATLAB’s analytical capabilities 
for advanced data analysis. The ROS-MATLAB interface is a 
useful interface for robot algorithms in MATLAB and testing 
it on ROS-compatible robots. The robotics system toolbox in 
MATLAB provides the interface between MATLAB and ROS. We 
can prototype our algorithm and test it on a ROS-enabled robot 
or in robot simulators such as Gazebo. From MATLAB, we can 
publish or subscribe to a topic, such as a ROS node, and we can 
make it a ROS master. The MATLAB-ROS interface has most 
of the ROS functionalities that we need. From the preceding 
fi gure, you can understand, that MATLAB is equipped with 
powerful toolboxes such as computer vision, control system, 
and signal processing. We can fetch the data from the robot 
through the ROS interface and process using this toolbox. After 
processing sensor data, we can also send control commands to 
the robot. 

A. Raspberry PI 4B: Raspberry Pi 4 Model B is the 
latest product in the popular Raspberry Pi range of 
computers [18]. It offers a ground-breaking increase 
in processor speed, multimedia performance, memory, 
and connectivity compared to the prior-generation 
Raspberry Pi 4 Model B+ while retaining backward 
compatibility and similar power consumption. For the 
end user, Raspberry Pi 4 Model B provides desktop 
performance comparable to entry-level x86 PC systems. 
This product’s key features include a high-performance 

64-bit quad-core processor, dual-display support at 
resolutions up to 4K via a pair of micro-HDMI ports, 
hardware video decodes at up to 4Kp60, up to 4GB of 
RAM, dual-band 2.4/5.0 GHz wireless LAN, Bluetooth 
5.0, Gigabit Ethernet, USB 3.0, and PoE capability (via a 
separate PoE HAT add-on). The dual-band wireless LAN 
and Bluetooth have modular compliance certifi cation, 
allowing the board to be designed into end products with 
signifi cantly reduced compliance testing, improving 
both cost and time to market. The Pi4B requires a good 
quality USB-C power supply capable of delivering 5V at 
3A. If attached downstream USB devices consume less 
than 500mA, a 5V, 3.5A supply may be used.

B. RPLIDAR A1M8: RPLIDAR A1 is a low-cost 260-degree 2D 
laser scanner (LIDAR) solution developed by SLAMTEC. 
The system can perform a 360-degree scan within a 
6-meter range. The produced 2D point cloud data can be 
used in mapping, localization, and object/environment 
modelling. RPLIDAR A1’s scanning frequency reached 
5.5 Hz when sampling 360 points each round [19]. It 
can be confi gured up to 10 Hz maximum. RPLIDAR A1 is 
basically a laser triangulation measurement system. It 
can work excellently in all kinds of indoor environments 
and outdoor environments without sunlight. The A1 
M8 is a compact and precise measurement device with 
dimensions measuring 98.5mm in length, 70mm in 
width, and 60mm in height. It boasts an impressive 
distance range capability, covering distances from 
as close as 0.15 meters to as far as 6 meters, making 
it suitable for a wide range of applications. Its 
0-360-degree angular range ensures a comprehensive 
fi eld of view, while its high-resolution measurements 
offer accuracy with a distance resolution of less than 
0.5mm and an angular resolution of equal to or less 
than 1 degree. The A1 M8 operates at a sample frequency 
between 2000 and 2010Hz, providing real-time data 
acquisition, and it can scan at a rate ranging from 1 to 
10Hz, with a typical scanning rate of 5.5Hz, making it 
a versatile tool for various sensing and measurement 
needs.

C. Power supply: The Raspberry Pi makes use of portable 
power banks that are used for the power supply. The 
power bank has a port that supports TYPE C cable with 
weight of around 434g and a capacity of 20000mAh.This 
power bank makes use of a Lithium Polymer Battery.

D. Communication protocol: A wireless connection is a 
convenient way of staying connected to a network. 
Unlike with a wired connection, you can roam around 
with your device without losing connectivity. Because of 
this, wireless features have become a standard in most 
devices. Any device connected to a Local Area Network 
is assigned an IP address. In order to connect to your 
Raspberry Pi from another machine using SSH or VNC, 
you need to know the Raspberry Pi’s IP addresses. We 
use a WPA_SUPPLICANT.CONF fi le to confi gure the Wi-
fi  module. We have to enter our Wi-fi  network name 

 

Figure 2: Connecting MATLAB and ROS.
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(SSID) and the password that we normally use to login 
to our network. This makes Pi connect to the network 
whenever powered

Results and Discussion

In this project, LiDAR data acquisition was successfully 
integrated with the ROS framework on a Raspberry Pi, and 
further data processing was carried out in MATLAB. The 
effective capture of precise environmental information has 
been demonstrated by our results, enabling robust 3D mapping 
and object detection. The potential for real-world applications 
in autonomous navigation and environmental monitoring is 
revealed by the observations. The feasibility and versatility 
of LiDAR technology when combined with ROS and MATLAB 
are emphasized by this project, underlining its practicality for 
various domains, from robotics to geospatial analysis.

A. Occupancy grid

The output generated by LiDAR Hector SLAM shown in 
Figures 3,4, holds a crucial role, wherein it is converted into 
an occupancy grid. This occupancy grid, serving as a two-
dimensional representation of the robot’s environment, forms 
the foundation of our path planning and obstacle avoidance 
systems in the robot’s navigation. Through the conversion of 
Hector SLAM data into this grid, the robot is endowed with a 
comprehensive understanding of its surroundings, enabling 
informed decisions to be made in real time. The integration of 
LiDAR data and occupancy grid mapping signifi cantly bolsters 

the robot’s autonomy, allowing obstacles to be identifi ed 
and optimal paths to be charted, thereby ensuring safety and 
effi ciency in its movements.

B. LIDAR scan data

Each data point in a lidar scan data set typically includes 
information about the 3D coordinates (x, y, z) of the point, the 
intensity of the returned laser pulse, and sometimes additional 
attributes like the return number and scan angle. Lidar scan 
data is commonly represented as a 3D point cloud, which is 
a collection of these data points in a Cartesian coordinate 
system [20]. These point clouds can be used to create detailed 
and precise 3D models of the environment. Lidar scans are 
often taken at specifi c angles, and this information is typically 
included in the data. Scan angle data helps in determining the 
direction from which the lidar sensor acquired each point. 
The timestamp at which each data point was acquired can 
be included to help with data synchronization or time-based 
analysis. Range data is a collection of distance measurements 
[21]. Each measurement represents the distance from the 
lidar sensor to a specifi c point or surface in the environment. 
Rosinit is used to initialize ROS, and by default, a ROS master is 
created in MATLAB, along with the initiation of a global node 
that is linked to the master. The global node is automatically 
employed by other ROS functions. All nodes within the ROS 
network can be viewed using rosnode list, with the initial node 
being the global node generated by rosinit [6,22,23]. To observe 
the available topics in the ROS network, a rostopic list can be 
used. There are four active topics: /pose, /rosout, /scan, and /
tf. The default topics, rosout, and tf, are consistently present 
within the ROS network. Specifi c details about a particular 
topic can be obtained by executing rostopic info, which, when 
used, demonstrates that /node_1 publishes messages. to the /
pose topic, while /node_2 subscribes to that topic for message 
reception.

C. HECTOR SLAM data

The hector SLAM output of this project is given in the 
Figure 5. Hector SLAM is a real-time SLAM algorithm used for 
mapping an environment and localizing a robot within that 
environment. Hector SLAM was developed for mobile robots, 
especially those with 2D Lidar sensors, and is known for its 
effi ciency and accuracy. Hector SLAM uses a scan-matching 
approach to build and update the occupancy grid map. It 
correlates consecutive Lidar scans to estimate the robot’s 
pose (position and orientation) and the location of obstacles 
on the map. This is done by aligning the new scan with the 
previously built map. Simultaneously with mapping, Hector 
SLAM performs robot localization. It estimates the robot’s pose 
within the environment by comparing the current Lidar scan 
with the previously created map. This information is crucial for 
the robot to know where it is on the map.

A robot may construct an accurate depiction of the 
environment, including the location and shape of objects, by 
integrating many Lidar scans to generate a precise map of 
the surrounding area. Lidar data is also necessary for path 
planning and navigation algorithms. Lidar scan data can 

Figure 3: Occupancy Grid.

Figure 4: LIDAR Scan Data.
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be used by robots to plan collision-free routes across their 
surroundings [24]. To increase the accuracy of the maps it 
generates, Hector SLAM uses methods such as loop closure 
detection. This aids in fi xing mistakes that have accumulated 
over time. It is capable of adapting to environmental changes, 
including moving objects and updating the map as necessary. 
Autonomous systems rely on Lidar scan and Hector SLAM data 
to comprehend and navigate their surroundings. Hector SLAM 
uses real-time processing of the extensive spatial information 
provided by Lidar to produce precise maps that allow the robot 
to locate itself inside it. This is essential for effi cient and safe 
navigation in a variety of applications, such as robotic systems, 
drones, and autonomous cars. The future scope of the project is 
to automate the robot to change its direction when an obstacle 
is found in the direction in which the robot traverses [25]. 
This can be done by communicating the output received from 
Simulink back to the robot developed by making use of a motor 
driver. The mapping that can be obtained from Hector SLAM 
helps in providing a detailed representation of the environment, 
thus enabling path planning, aiding in localization, facilitating 
collision avoidance, and ensuring the robot has an up-to-date 
understanding of its surroundings [25,26]. This will make the 
robot to be used in geofencing applications in the military. 
Digital twinning provides a valuable framework for enhancing 
the capabilities of military robots operating within geofenced 
areas. It improves their ability to navigate, adapt to changing 
conditions, and contribute to the success of military missions 
while maintaining a high level of safety and effi ciency.

Conclusion

The data from the Lidar is displayed using rviz. We could 
visualize the mapping of the data obtained. This data has to 
be brought to MATLAB using ROS. The Simulink model takes 
scan and pose data from the Lidar and helps us to predict the 
robot’s behavior. Here the model developed makes use of a 
reinforcement learning algorithm and pure pursuit algorithm to 
move towards its target. Also, the robot is given the occupancy 
grid that replicates the environment and the existing path in 
which the robot could move. Any new obstacle found will be 
displayed in the grid. Thus, digital twinning technology helps 

in real-time remote monitoring and also helps to predict 
the performance of the robot in an uncertain situation. To 
automate the robot to change its direction when an obstacle 
is found in the direction in which the robot traverses. This can 
be done by communicating the output received from Simulink 
back to the robot developed by making use of a motor driver. 
The mapping that can be obtained from Hector SLAM helps in 
providing a detailed representation of the environment, thus 
enabling path planning, aiding in localization, facilitating 
collision avoidance, and ensuring the robot has an up-to-date 
understanding of its surroundings.
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