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Introduction

Road safety is an important issue in these years. The 
number of deaths on roadways are 1.35 million around the 
world each year [1] and the main reason of an accident could 
depend of the actions of the driver [2]. Recently manufactured 
cars are investing in research to create autonomous system 
able to prevent and avoid risky situations. One of these 
dangerous conditions regards a context in which the driver 
loses the control of the car: sliding or braking sharply by 
external and unexpected events. Different systems may 
detect these anomalous states: some using the human like 
a sensor by EEG signal [3] or biometric t-shirt [4]. Recent 
research advancements in technology focuses on active safety 
technology (AST) regarding the ADAS that assists drivers in 
driving. In [5] is shown how this technology can reduce the 
number of crashes by considering different possible traffi c 
situations.  Another positive aspect regards the reduction of 
fuel consuption and traffi c congestions through vehicle control 
optimization and platooning [6]. 

In this context, it is important to provide alternative 
systems able to detect the risky situation and improve the 
safety on road. The focus of the control system proposed in 
this paper is to improve the technology of the ADAS.

In this paper, the proposed system does not consider only a 
specifi c speed or a position for the car which covers a straight 
lane, but its focuses on the detection of the risk situations 
through the data coming from the automotive system as the 
slip angle. According to the acquired data, the model takes 
the full control of the car in order to recover from errors due 
to human operator and restore a safe state. In these cases, a 
process able to increase the autonomy level in the human-
machine system is fundamental [7]. Another positive aspect 
is the resilience of the system to the external events [8]. The 
slip angle is extremely useful in many safety application [9] to 
prevent some risk situation. The slip angle can be estimated 
using the steering torque [10] or using the wheel speed and 
lateral acceleration [11]. Those latter automotive data is 
evaluated by sensors located in the car in order to shift toward 
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a state of autonomous system in order to take the control and 
react without human intervention. In this paper the slip value 
is evaluated by a Kalman Filter that estimates the lateral speed 
of the chassis and computes the sideslip angle.

Methods and materials

Vehicle model

The linear yaw-plane bicycle model (Figure 1) is adopted 
to design the Model Predictive Control and it is used to make 
predictions on the states of the vehicle.

Where: 

• y is the lateral displacement; 

• y is the lateral speed;

•  is the yaw angle; 

•  is the yaw rate;

•  is the steering angle of the front wheels while it is 
assumed that the rear wheel is not able to turn;

• Fy r and Fy f
 are the lateral forces generated by the wheel

• a is the distance from the front axis and the Centre of 
Gravity (CG);

• b is distance from the rear axis and the CG;

The adopted model considers a linear tyre model where 
the wheels dynamics are linearized with a constant stiffness 
coeffi cient Cf for the front wheel, Cr for the rear wheel) as 
shown in Figure 2.

Thus, the forces Fy f and Fyr  are defi ned as follows:

2F Cy f ff


2F Cy r rr 
                 (1)

Where f and r are the drift angle of the front and rear 

wheel, defi ned as:
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The linearization of the wheel model implies a less accurate 
computation of the lateral and longitudinal force generated by 
the wheel while driving and breaking; however, since the goal 
of the system is to keep the vehicle in the linear region of the 
wheels dynamics it is possible to use this approximation. Further 
improvements of the system include the implementation of 
better models such as the Magic Formula.

Thus, the continuous state space representation is defi ned 
as follows:

X AX Bu 
                  (3)

Where   TX y y    is the state vector and  u =  is 

the control input.

The state space matrices A and B are defi ned as follows:
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  Figure 1: Vehicle bicycle model. Fyr and Fy f

are the lateral forces generated by 

the wheel and depend on the characteristics of the wheel itself.

 

Figure 2: Comparison of a Non-Linear tyre model (such as the Magic Formula) and 
the linearized model (dotted line) with the stiffness coeffi  cient [13].
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Then the proposed model is discretized by Euler Method:

*A A Ts In nk   

*B B Tsk 

 
C Ck 

                   (5)

Where:

x is the longitudinal speed of the vehicle;

,C f r is the stiffness coeffi cient of the front (f) and rear (r) 
tyre;

m is the mass of the vehicle; 

I zz is the inertia on the z-axis.

Ts is the sampling time.

Activation criteria 

The proposed autonomous system has to be activated when 
specifi c conditions that could lead to dangerous situations 
occur, such as oversteering or understeering.

The sideslip angle is a signifi cant parameter in the detection 
of the risk due to situations where the vehicle starts to lose 
control. Thus, the analysis of the sideslip angle value allows to 
prevent the loss of control and it provides effi cient information 
to effectively apply an ad-hoc control law. The slip angle can be 
obtained using the relationship in (6):

arctan
y

x
 

 
 
 



                  (6)

Where   is the sideslip angle, y and x  are respectively the 
lateral speed and longitudinal speed of the CG of the vehicle.

In the proposed approach, the data coming from the sensor 
(accelerometer) which stores the longitudinal and lateral 
acceleration and yaw rate is affected by white noises due to 
measurement errors. In order to provide an optimal fi ltering 
of such noises in the measurements and to generate a good 
estimator for the sideslip angle , a Kalman Filter (KF) is 
adopted. Thus, the criteria will be:

ˆ
lim 

lim  
                    (7)

Where  and   are respectively the estimated sideslip 
angle and rate while lim  and lim are the related threshold 
limit values over which the controller starts.

The KF, instead of using the model proposed in (4), is 
based is based only on the dynamic equation of lateral speed 

y  and yaw rate  , and only the lateral speed is supposed to be 
measurable from the accelerometer:
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 1 0 
 

The model is linearised and discretised around the operating 
point 0x  which represents the current vehicle speed. Due to 
the presence of noises on state measurements, the state space 
representation may be formalized as follows:

1 U wk k k k k k     

k kk   
                     (9)

Where:

 yk k k  

k , k  and k  are the discretised matrices with Euler 
method as in (5)

wk is the noise on the state at time k

The KF implements the following recursive equations:

1. Prediction phase

U wk k k k k k                    (10)

2. Update of error covariance matrix P and Kalman gain K

T
QP P   

 T T
K P P R    

                  (11)

3. Update the state estimation

 K ymeasurementsk k k       
             (12)

4. Update of error covariance matrix P

   T T
P I K P I K KRK     

                (13)

For each time interval, the KF estimates the state of the 
system, and the sideslip angle is computed by the equation (6).

In Figure 3 is shown the result of the estimation process 
during the simulation. The KF correctly estimates the sideslip 
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angle with a maximum error of 0.011 and an average error of 
-1.5∙10-4 with respect to the ground truth which is given by the 
simulation software.

Lane keeping control 

When the sideslip angle overcomes the thresholds, the 
vehicle control, consisting in a Lane Keeping System, starts 
and keeps the vehicle control.

The control system is based on the dynamic Linear Time 
Varying System (LTV) model proposed in (4). According to 
[12], in fact, the dynamic model performs a robust estimate in 
respect to the kinematic model which is fast and simple to be 
applied but it is very sensitive to noise on measurements, above 
all for the accelerations measurements which are affected by 
high errors. For these reasons, in this kind of application, the 
use of a dynamic model is recommended.

The aim of the proposed control law is to minimize the 
quadratic cost function J to converge the lateral offset to zero.

It is supposed to have the lane boundaries from a camera 
located on the front of the vehicle using a vision detection 
algorithm. In respect to the boundaries, the lateral offsets with 
respect to the vehicle, the centre of the lane and the respective 
lateral offset are computed. The simulation software gives data 
subjected to measurements error/noise. More noise is in the 
data, less precise would be the controller response in terms 
of oscillations with respect to the centre of the lane. In this 
case of study, the simulated sensor has a measurement error 
of 3 centimetres. In order to improve the performance of the 
system, an accurate tuning of the KF is required to fi lter the 
noises of the sensors.

To improve the controller performances, the following 
formulation of the augmented state for the model presented 
in (6) is derived

   : ,  : 

y
y

y
y
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             (14)

Consequentially, with an abuse of notation, the model 
matrices are redefi ned as follows:

 ,  ,  0
0
A B Bk k kA B C Ck k k kI I
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                  (15)

Thus, the cost function is defi ned as follow and it is 
minimized at each time step over a prediction horizon Np:

       
1

Ä Ä, , , ,
0

N TT T
J Y CX Q Y CX Y CX Q Y CX U R Ur N N N r N N r k k r k k k k

k


      



 
     

                (16)

Where:

,Yr k is the reference at time k; 

Xk is the vehicle state at time k; 

Uk  is the optimization vector consisting in the steering 

angle;

The matrices QN, Q and R are optimization matrices tuned 
by hand.

The minimization problem is subjected to specifi c 
constraints to achieve better results. The constraints are 
applied on the control variables and their rate in time over the 
control horizon Nc.

Some considerations must be made on the upper and lower 
bound for the control Uk. The objective of the control system is 
to avoid high values for the sideslip angle which may produce 
over or under steering situations with the consequent losing 
control of the vehicle. So, inappropriate setting of the bound 
values may induce the MPC to react too strongly generating a 
high value of counter steer resulting in a drift. To avoid such 
behaviour, a dynamic constraint is applied to the steering 
wheel.

The approach proposed in this paper approximates the 
longitudinal acceleration to zero since the rate of change of 
the speed over the prediction horizon could be negligible. As 
shown in [14], the lateral acceleration of the vehicle must be 
bounded by the tyre-road friction coeffi cient, thus resulting in 
the following relation: 

 
a gy 

                (17)

Where ay is the lateral acceleration, μ is the road friction 
and g is the gravity force.

The lateral acceleration could also be expressed in function 
of the curvature of the vehicle trajectory:

2
*0a xy k 

Figure 3: Sideslip angle estimation with respect to ground truth.
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               (18)

where kk is the curvature at time k,  Rk is the turning radius 
of a vehicle with the steering angle at time  k  and wheelbase L. 
The steering angle is then derived from equations (18) and (17):
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 asink 
               (19b)

The argument of the arcsine function (19b) is limited 
between [-1,1] (19a) and the result is capped to physical limits 
of the steering system.

Thus, the  computation became:

,   , , ,

,   , , ,

ifub lim ub lim ub physical ub

iflb lim lb lim lb physical lb

   
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 
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

              (20)

Where  ,lim lb ub is the limit obtained by equation (20) and 

 , ,physical lb ub  is the physical limit of the steering system.

The limit of a steering system depends on different 
characteristics such as physical space available for wheels 
and steering linkage geometry (Ackermann, Anti-Ackerman, 
Bell-crank, Rack-and-Pinion, Short Rack-and-Pinion). The 
proposed system uses a limit that should be feasible for the 
most types of cars.

The resulting  ,lb ub  is used as constraint for current time 

instant over the control horizon. In Figure 4 are shown the 

different limits of  ,lb ub  in respect to the longitudinal speed 

of the vehicle on a high adhesion (μ = 0.8). Thus, the complete 
optimization problem became:

 *
min ,

*
J X


 


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. .s t

,             0, ,1X A X B k N pk k k k k    

,                                    0, ,Y C X k N pk k k  

           0, ,1 k Nclb k k ub        

             0, ,U k Nmin max ck       
            (21)

Where 
*

  is the optimal control for Nc instant but only the 
fi rst one will be applied due to possible noise on measurement 
or control.

Case study and results

The case of study consists in a vehicle, driven by a human 
driver, which covers a straight road. After 2 second from the 
simulation beginning, a sudden steering makes the car turns 
to the left, generating a risk situation that is detected by the 
estimator of the  angle.

The system has been simulated in MATLAB Simulink 
software with a sample time Ts = 0.05 s. The steering peak of 
the wheels consists in a step signal of 5 degree.

The values of all parameters to implement the model are 
listed in Table 1.

Figure 4: Steering angle limit according to longitudinal speed on high adhesion road 
(μ = 0.8).

Figure 5: Comparison of MPC controls with and without limitation on steering angle.

Figure 6: Lateral error during simulation of a sudden steering. The steering event 
occurs at the 2° seconds after the beginning of the simulation and after 0.4 seconds 
the MPC takes control of the vehicle, ignoring the driver’s commands.
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Table 1: Vehicle parameters.

Symbol Name and Unit Value

a Front axis – CG distance (m) 1.4

b Front axis – CG distance (m) 1.6

m Mass (Kg) 2000

Izz Inertia (Nm) 4000

Cf Stiffness front tyre (dimensionless) 12 * 103

Cf Stiffness rear tyre (dimensionless) 11 * 103

The constraints on the maximum and minimum steering 
angle defi ned by (20), slow down the controller response, as 
shown in Figure 5, to avoid high values of sideslip angle.

Figure 6 shows the result of the simulation in terms 
of lateral error in respect to the centre of the lane, which is 
estimated runtime in respect to the lateral offsets of the lane 
boundaries identifi ed by the vision detection camera installed 
on the front of the vehicle.

The MPC has a prediction horizon of 15 time instants 
corresponding to 0.75 seconds and a control horizon of 0.01 
sec.

Conclusions

A Linear Time Varying (LTV) Model Predictive Control 
(MPC) is presented in this paper in order to control the vehicle 
steering in case of anomalous events during the driving 
sessions. The control system estimates in real time the sideslip 
angle of the vehicle through a Kalman Filter and, according to 
specifi c threshold values, the controller is activated, replacing 
the driver, to correct the vehicle trajectory by maintaining the 
correct position in the lane of the road at constant speed. When 
a safe standard driving condition is restored, the controller 
gives the control back to the driver. The results show a good 
response of the controller which can however be improved by 
adding other constraints and risk assessment criteria such as 
overpassing lanes and prediction of the direction of the vehicle 
to anticipate the risk.

The model considered in this work does not take into 
account other important dynamics of the vehicle such as 
the road slope and suspensions. To include these dynamics, 
other considerations have to be made; in particular, it would 
be necessary to consider a model far more complicated and 
precise which requires a more powerful and effi cient processor 
to implement a predictive control.
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