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Introduction

With the increasing rate of worldwide population and 
the scarcity of natural water supply, due to the lack of global 
precipitation and climate change, the demand on drinking 
water is rising in an exponential way [1]. This increase has 
put pressure on water working treatment personal, as a 
need to boost drinking water production is more and more 
challenging. In order to overcome this problem, all applied 
fundamental scientifi c fi elds have found their place in the 
Water Treatment Plant’s (WTP) optimization. Chemistry and 
Physics were involved in order to understand the behavior of 
water as a molecule and a mixture of different components, at 
the microscopic and macroscopic level, simultaneously [1]. The 
application of chemistry and physics in a single-handed way, 
has found its shortcomings in giving answers for the problems 
encountered in WTP [2-4]. It is not surprising that looking 
at a problem, in a monotonic way, will give less grasp to the 
phenomena occurred. In order to overcome this issue, the 
integration of applied mathematics to the applied sciences have 
gave a better understanding of the problem, hence, a better set 
of solutions for water treatment issues [1]. This combination of 
different scientifi c fi elds has put the artifi cial intelligence (AI) 
in the heart of water analysis and treatment [1].

In other hand, the application of AI technologies in water 

real-life problems have raised several concerns, because 

the mathematical models, employed, are usually based on 

assumptions that are diffi cult to implement in practice [1]. 

Moreover, modelling lacks of an overall understanding of 

the analyzed system requirements [2-4]. The non-linear 

relationships involved in water processing are challenging to 

fi t [2-4]. This has raised the interest of using unsupervised 

machine learning approaches [1]. These techniques work on a 

given dataset (from chemistry or physics) and yields a certain 

trend, without a prior knowledge or any assumptions adopted 

[1].

The application of Machine Learning technologies has 

been more likely used to reveal unhidden pattern in analytical 

dataset, to better interpret the quality of analyzed water. In the 

process optimization side and material choice, extensive work 

can be executed. Therefore, our aim in this study is to perform 

two unsupervised machine learning techniques to better pick 

between fi lter types that are mostly used in WTPs. The two 

investigated methods are the Hierarchical Cluster Analysis 

(HCA) and the Principal Component Analysis (PCA).
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Machine learning methods

Principal Component Analysis (PCA): PCA is used in data 
exploration techniques used and for establishing descriptive 
models. It works on the dimensionality reduction. Data 
reduction is done, with two perspectives in mind: (1) the lower 
the dimensions yielded, and (2) the orthogonality of the new 
dimensions, which are the principal components (PCs). PCs are 
actually the direction of the maximal variance of the dataset. 
Performing this task for two factors is quite feasible, yet this 
issue gradually increases with the increase of the number 
of factors. Overcoming this problem is made easy with the 
development of sophisticated calculation algorithms [9–11]. 
Several studies have focused on the mathematical description 
of PCA. Hence, the theory is well developed. Other studies have 
used PCA as a tool to reveal some proxies in Geochemistry [12–
15], Energy [16] and Biomass characterization [17,18].

Hierarchical Cluster Analysis (HCA): HCA is a classifi cation 
technique of objects into different groups. It starts with one 
cluster, as individual item in its own cluster, and it iteratively 
merge clusters until all items belong to one cluster. It follows a 
bottom-up approach, where the clusters are merged together. 
Pictorially, dendrograms are used to represent the HCA. It can 
be represented using three techniques, the single-nearest 
distance or single linkage, the complete-farthest distance, 
and average-average distance or known as average linkage. 
The single linkage is described as the distance between the 
closest members of two clusters, the complete linkage as the 
distance between the members that are farther apart. The 
average linkage involves looking at the distances between all 
pairs and averages of these distances. This is also called the 
unweighted pair group mean averaging, that we have used in 
our study [9,10]. The application of HCA is more likely extended 
to molecular biology [19,20]. Other studies have traced the 
application of HCA in Biomass characterization [17,18].

The application of machine learning in membrane tech-
nology

Here, we will apply the above-described unsupervised 
machine learning tools for the elucidation of different 
trends that might occur in different type of water treatment 
membranes. Several features are employed to describe the 
membrane [21] (Table 1). Turbidity-Raw and turbidity-Effl uent 
present the effi ciency of the membrane in eliminating particles. 
Without any doubt, an effi cient membrane requires low 
turbidity effl uent. Some other features like Pre-Coat and Body 
Feed describe operating protocol. The pre-coat tank is fi lled 
with a given amount of water and with a given mass charge of 
diatomite that results in the specifi ed pre-coat area density. 
Selection of DE grade and determination of concentration 
and mixing slurry are the tasks associated with body feed. 
Usually, the grade and concentration are determined as a fi rst 
estimate during the design phase and refi ned during operation. 
The differential pressure (∆P) states the energy required to 
perform fi ltration. The higher the differential is, more energy 
is required. Number of runs is an age-related factor; the higher 
it is, the longer the lifetime of the membrane will be.

The dendrograms in Figure 1 show similarities and 
dissimilarities between the investigated DE membranes. The 
Euclidean distance between strains was investigated based 
on the featured properties, shown in Table 1. Generally, two 
main clusters are observed. 900W(P), C-535 and FW12(DE) are 
the components of the cluster showing the highest similarity. 
Other membranes presented the components of the second 
cluster where lower similarity was observed. If one compares 
it with the components of the fi rst cluster. In other words, the 
Euclidean distances between the components of the fi rst cluster 
are relatively lower than those between the other components. 
The most similar membranes are FW-20(DE) and 4200(DE). 
These two membranes are exceptional in the second cluster, 
as higher discrepancy, between other components, is shown. 
Although the same features were presented for all membranes 
(Table 1), HCA allowed the distinction between two main 
patterns: 900W(P), C-535 and FW12(DE) compose one pattern 
and the rest compose the second patter. This data analysis 
technique has shown similarities and discrepancies between 
membrane types; a deeper investigation of this difference 
would be envisaged by PCA.

PCA was performed for the featured properties (Table 1), 
in order to test their distribution among different types of 
membranes. PCA also provides a general view of correlation 
and dissimilarity among the seven membrane type and the 
six investigated factors. The results were presented on two-
dimensional perspective with a graph (plot for scores and 
loadings, simultaneously) obtained from Pearson correlation 
matrix for variables (Figure 2). The fi rst and second PCs 
accounted for 75.57% of total variance in data set (PC1, 52.07% 
and PC2, 23.5%). This high value indicates that the comparison 

 Table 1: Description of seven Diatomaceous Earth (DE) plants and operating 
protocols.

Filter Aid - Grade
Pre-
Coat

Body 
Feed

Turbidity - 
Raw

Turbidity - 
Effl  uent

Run ∆P

FW-20 (DE) 0.11 10.8 0.75 0.1 14 54

4200 (DE) 0.08 17.7 0.4 0.12 10 57

700, 900, 1500 (P) 0.05 63 100 0.3 3.3 483

C-535 0.1 12 0.45 0.5 12 207

FW12 (DE) 0.26 40 50.5 0.09 3 186

900 W (P) 0.04 12.6 0.2 0.04 14 276

Hyfl o Super-Cel (DE) 0.09 32.5 8.5 0.3 0.4 96
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Figure 1 : Hierarchical cluster analysis, showing the complete linkage dendrograms 
of the data, based on the featured properties of different membranes (Table 1).
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of the employed parameters is statistically meaningful and 
reliable trends can be concluded from this dataset (Table 1). 
Four different clusters can be identifi ed from the PCA approach 
(Figure 2). The fi rst cluster contains FW-20(DE), 4200(DE), 
900W(P) and C-535. The other three clusters contained 
FW12(DE), Hyfl oSuper-Cel(DE) and 700 900 1500(P), 
separately. Unlike HCA approach, 4200(DE) showed proximity 
to 900W(D) and its homologues.

Regarding factor loadings, PC1 was most likely positively 
dominated by Body Feed, turbidity and ∆P. On the negative side 
of PC1, the number of Runs has the major infl uence. Following 
these trends, it can be shown that PC1 presents the “Effi ciency 
Factors” of membranes. PC2, was most likely positively 
dominated by Pre-Coat. This indicates that PC2 is most likely 
an indicator of the conditioning state of the membranes. All 
membranes were found to be away from “Turbidity Raw” 
factor. This indicates that all investigated membranes present a 
high pollutant removal capacity. Cluster 1 of membranes (FW-
20(DE), C-535, 4200(DE) and 900W(P), Figure 2) shows high 
correlation with the factor “Run”. This indicates that these 
membranes could be more likely employed in conventional 
water treatment processes that require higher number of runs. 
FW12(DE) presented a high correlation to the “Pre-Coat” 
factor. This indicates that care should be taken when FW12(DE) 
is used in corrosive and highly reactant conditions (high acidity, 
alkaline conditions, temperature, pressure…). 700 900 1500 (P) 
membrane presents high correlation with ∆P. This indicates 
that this type of membrane requires and handles high-energy 
input. Interestingly, Hyfl oSuper-Cel(DE) have been projected 
near the node. This means that this membrane presented low 
infl uence to the investigated factors, or it presents intermediate 
behavior, if compared to the other membrane types.

Comparison between machine learning methods

The unsupervised machine learning approaches show 
interesting features of the compared properties, as trends 
of the relative properties are hardly seen, when analyzed 
independently. Both methods showed a clear dissimilarity 
between some of the membrane types. PCA showed higher 

effi ciency rather than HCA; as along showing discrepancies, 
PCA allowed us to quantify the infl uence of the investigated 
factors. This feature makes it rather advantageous on the HCA, 
as it only distinguished, quantitatively, between membranes.

PCA simplifi es the complexity of a dataset with high 
dimensionality while, at the same time, keeps the different 
patterns and highlights the signifi cant trends. This yields a 
better interpretation and PCs act as the new factors representing 
the dataset. These factors are independent from each other, yet 
represent, in a single-handed way, a combination of all of the 
factors with a different proportion of infl uence.

Conclusion

This study only presents a small extent of the applicability 
of unsupervised machine learning to pick the required 
apparatus, for an investigated treatment. A small dataset has 
been purposely chosen, in order to reveal the correlations 
and discrepancies via simple data visualization. Hence, the 
proposed data mining approach have elucidated the effi ciency 
of PCA and HCA to reveal trends between membrane materials. 
PCA found a better effi ciency rather than HCA, as the fi rst 
showed the infl uence and weight of each factor, in regard to 
the classifi cation. The second was only restricted to classifying 
different membranes used, without deciphering the factors 
involved in this classifi cation. Hence, we strongly recommend 
the application of PCA for depicting a better choice of equipment 
and to optimize water treatment process conditions.
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