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Abstract

The Hodgin-Huxley model is one of the most widely studied biological systems of nonlinear differential equations that is applied to explore nerve cells activities 
via electrical communications. In this paper we consider some numerical aspects of a simplifi ed version of this model known as the FitzHugh-Nagumo (FHN) equation. 
Dynamical experiments conducted herein not only confi rm those obtained from earlier studies but also facilitate a better understanding of the qualitative features of the 
FHN model especially those that initiate the behavior a threshold-triggered excitation media. To this end, methods of dynamical system analysis such as bifurcation and 
linear stability analysis are deployed to investigate the general qualitative features of an inhibitor-activator system which characterizes the FHN system of equations. 

Research Article

Dynamical Computations 
of the FitzHugh- Nagumo 
Equation
Okey Oseloka Onyejekwe* 
The Robnello Unit for Continuum Mechanics Applications and Nonlinear Dynamics, Umuagu, Oshimili 

South, Asaba, Delta State, Nigeria

Received: 16 August , 2021
Accepted: 31 August , 2021
Published: 01 September, 2021

*Corresponding author: Okey Oseloka Onyejekwe, The 
Robnello Unit for Continuum Mechanics Applications 
and Nonlinear Dynamics, Umuagu, Oshimili South, 
Asaba, Delta State, Nigeria, 
E-mail: 

Keywords: Hodgin-huxley model; FitzHugh-nagumo 
equation; Nonlinear differential equations; Dynamical 
system; Bifurcation; Nonlinear stability analysis; 
Qualitative features; Excitation media

https://www.peertechzpublications.com

Introduction

FitzHugh and Nagumo [1,2] were motivated by the Hodgkin 
and Huxley [3] theoretical description of a cell reaction 
based on equivalent circuit diagrams to construct a much 
simpler two variable model. Their two-coupled nonlinear 
ordinary differential equations replaced the four more 
realistic but cumbersome Hodgkin and Huxley (HH) type; and 
displayed almost the same dynamical properties and stability 
characteristics. On the whole, the FitzHugh-Nagumo (FHN) 
model falls under the broad category of reaction-diffusion; 
inhibitor-activator systems where the inhibitor variable is 
slow and the activator variable is fast. Though it was originally 
used to describe the action potential activity of the neurons; 
the coupling of excitation and diffusion make it amenable to 
handle the propagation of waves in excitable media that can 
arise in spiral wave dynamics [4]. This system of equations 
has therefore been found to provide a corner stone for other 
models with similar physical characteristics. By extension, 
its morphological features can also be extended to power 
generating systems involving water supply and irrigation or 
birth-death reaction models involving the spread of disease and 
micro-organisms, including robotic prostheses employing the 
transmission of signals between the central nervous systems 
and smart robots and more complex applications found in bio-
engineering and neuronal physics [5].

The FHN model exhibits oscillations that are characteristic 
of strongly dissipative systems with time scale separation 
as is demonstrated by high amplitude response to periodic 
inputs in a selected frequency range. To some varying degrees, 
examples of these can be found in the RLC circuit, the Vander 
Pol equations [6] and the mass-spring-damper systems. This 
overriding characteristic, makes it a key ingredient and a 
starting point of understanding more complex phenomena as 
in the case of biological cells which maintain a difference of 
electric potential across their membrane. Many other models 
were developed after the HH model. These include those of 
Morris-Lecar (ML) and FHN [7] to mention just a few. Each 
of these vary in utility, effi ciency and biophysical relevance as 
each was tailored to supplement the original HH model and 
achieve some specifi c objectives.

The inherent interdisciplinary nature of the FHN model 
serves as a key motivation for using qualitative techniques 
to understand many key ingredients of the underlying 
mathematical formulation. There has been a key interest in 
addressing questions of stability and long term response of 
systems of equations to external inputs and stimuli from the 
context of equilibrium dynamics. This has led to improvements 
from mere geometric characterizations to the design of more 
reliable and robust systems. In this work, we go a little 
bit further by re-establishing some key aspects of these 
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attempts with the view of arriving at a better understanding 
of the nontrivial behaviors involving neuronal excitation and 
response given their applications in various fi elds.

 van der Pol [8], observed that excitable membranes display 
similarities with self-sustained oscillations. The FHN model is 
an extension of this overriding concept. The injection of a small 
current through a cell membrane makes the cell to passively 
respond with a small voltage deviation. This continues until 
the attainment of a certain threshold after which the response 
becomes more prominent. This is called a spike or an action 
potential and is found mostly in neurons and muscle cells. 
The display of oscillations and nonlinear effects in living 
organisms and chaotic motions that may follow thereafter 
provide a fertile ground for the study of complex dynamical 
systems that sometimes go beyond the capacity of quantitative 
analysis alone. The involvement of nonlinear dynamical 
systems theory in this fi eld, has been found rewarding not 
only from the viewpoint of providing explanations of this 
complex and fascinating behavior but also in providing a better 
understanding of similar activities away from equilibrium. 
This aspect can be very advantageous in predicting overall 
outcomes.

The phase space not only analyzes the space determined by 
all system variables in the space where all possible states of the 
system exists, but also proffers a rich qualitative information 
into the behavior of a system under different scenarios. This 
technique is defi ned by the so called space volume which for a 
dynamical system is [9].  

        '. , 1
F Fv wV F v w dwdv dwdv f v dwdv
v w


 

       
 

 
 
 



 

where v and w represent cell membrane voltage and recovery 
respectively.

The above equation yields a geometric representation of 
the trajectories and vector fi elds of a dynamical system in the 
phase plane. In addition an intuitive insight of the behavior of 
the system is obtained without actually solving the problem.

FitzHugh-nagumo model

Richard FitzHugh carried out an in depth study of the 
dynamics of the HH model. One of his key observations was 
that the model followed a fast or slow kinetics. This motivated 
the conversion of the original four- dimensional HH model to 
its two-dimensional analog. He initially obtained the following 
two-variable model

        

   

3 40.8 2

2

dV
C I g m n V V g n V V g V V aext Na Na K K L L
dt

m V mdn
b

dt n

       




 

where V is the potential, t is the time, ,g gNA k  are the sodium 

and potassium conductances respectively, ,I Iext L the exit and 

leakage currents, gL  the combined conductance for leakage 

current, n is channel gating variable, n  is the voltage sensitive 

time constant,  m V is the voltage-sensitive steady state 

activation function, m is the probability of an activation gate 

being open. V VNa K are potentials for sodium and potassium 

ions. VL is ohmic leak potential. For more information 

concerning the origin of this equation, the reader can refer to 
Izikevich [10].

He further simplifi ed these two nonlinear coupled and 
continuous two dimensional ODEs to a general autonomous 
dynamical system of ODEs that are put in a general form:

       ( ) ( ) 1 2v v t v t v t w t I c    

   ( ) ( ) 2w v t w t d   

where 0   sets the time- scale for the w recovery 
dynamics,  is an inhibitor threshold-like parameter, the 
quantity I  corresponds to the current applied to the membrane 
and will represent the bifurcation parameter, the variable 

 v t  is the voltage-like variable with a cubic nonlinearity that 

allows for physical regeneration and self-excitation,  w t  is 

the recovery variable permitting a slower negative feedback 
and  is the shunting variable.

Solution of equations 2a and 2b shows a slow collection and 
fast release of voltage, including nullclines of v and w that have 
cubic and linear shapes respectively and for certain parameter 
values, equations (2a) and (2c) become: 

   31 3 3v v v w I a   
 

   0.8 3w v w b b  

The parameters b and Ø are dimensionless and positive. The 
amplitude of Ø is the inverse of a time constant and measures 

how fast the voltage-like and recovery variables  v t  and 

 w t  change with respect to each other.

The FHN model represents the generalized version of 
the van der Pol relaxation oscillator. As simple as it looks, it 
satisfactorily approximates the HH model and retains some 
of its utilitarian properties like excitability, stable equilibrium 
and existence can qualitatively reproduce the major dynamical 
features of realistic neural models. Being dimensionless it may 
not be particularly relevant from a physiological consideration, 
yet it offers immense scope for dynamical analysis and paves 
the way for future study of various forms of excitable systems 
and biophysical models. 

The self- activating and inhibition properties of equations 
(3a) and (3b) bring to mind the interaction of foxes and rabbits 
in the Lokta-Volterra equations except that the system is given 
an inhomogeneous growth by the presence of an applied current 
which initiates a slow collection and fast release of voltage. 
Neurons cannot collect voltage and fi re immediately, they 
need time to rest. Moreover, if the stimulus current I  does not 
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Simulations and Discussions

In order to identify at which levels the FHN model produces 
excitations as well as make accurate statements concerning 
the stability of the equilibrium points, we vary the problem 
parameters and apply different magnitudes of the excitation 
current as inputs into the FHN model for equations (4a) 
and (4b). In this work, we make attempts to emphasize the 
physics of our observations concerning the self-activation and 
inhibition properties of this model. The time lag that occurs 
before one of the components of the FHN model reacts may be 
attributed to the fact that infi nitesimal perturbations does not 
often respond linearly to a system. Though the system may 
eventually become chaotic as one of the problem parameters 
is increased, and perturbations grow accordingly yet there 
could be some points along the trajectory where the effects 
are negative. To see these effects clearly we have opted to plot 
the spectral abscissa against the bifurcation parameter for 
different values of problem parameters as can be seen from 
fi gures 3,4,9a and 10. This is accompanied by explanations.

Firstly we adopt the following parameter values: a=0.139,

.008, 2.54, 0I    . In Figure (1a) the action potential is 
indicated by the time evolution of the membrane voltage. Figure 
1b compares the temporal evolution of both the membrane 
potential and the corresponding recovery response for a time 
interval. A signifi cant variation in the profi les can be observed 
for 140t   after which they both converge asymptotically to 
zero. Numerical calculations identify an equilibrium point 

at (0,0) and complex conjugate roots of  0.07966 0.06659i   

which indicates a stable focus at the origin. With respect 

to equations (4a) and (4b) ,when , 0,v w w   and for 

  1 , 0w v v a v v     ; there is clearly a fi xed point at 

the origin as confi rmed by Figures (1c) and (1d). Numerical 
experiments also indicate that most of the interesting 
dynamical activities happen within a stimulus current range 
of 0.035010 0.035143I  . For example Figure (2a) shows a 
computer generated v-w time evolution profi les surrounding 

exceed a certain threshold, then the voltage v does not possess 
the capacity to excite the system and it remains dormant. On 
the other hand, when the threshold is exceeded, the dynamics 
of the system suddenly changes and the neurons start fi ring 
with v displaying peak and trough profi les repeatedly. If the 
stimulus current I continues to increase, another threshold is 
exceeded and w comes to another steady state that shuts down 
the activity of v   

Dynamical analysis of the FHN model

There is a need to defi ne the general topology that comes 
with the FHN equations on the v-w plane by focusing on the 
geometrical depiction of specifi c orbits, the limit cycles and 
activities in the vicinity of equilibrium points and in particular.

Valuable information concerning a single point in space as 
well as details of certain aspects of topological properties can be 
arrived at by examining qualitatively the phase space spanned 
by w and v in equations (2a) and (2b). Linearization of the 
nonlinear system of equations near their fi xed or equilibrium 
points is key to determining the stability property as well as 
classifying the space paths with the help of the eigenvalues of 
the Jacobian matrix of the system of equations. In addition, 
according to the Hartman-Grobman theorem [10], a nonlinear 
system is geometrically similar (topologically conjugate) to 
a linear system in a vicinity that is suffi ciently close to its 
equilibrium point.

At steady state, equations (2a) and (2b) can be rewritten to 
read:

        3 2, 1 1 0 4v f v w v v a v w v v a va w a           
 

     , 0 4w g v w v w bv cw b      
 

Where ,b v c    respectively. For 

  1 , 0 0v w and w v v a v w and v         , and there is 

a fi xed point at the origin. In order to determine the nature of 
this fi xed point, we have to start the linearization procedure by 

defi ning the Jacobian at the point     , 0, 0w v  , that is:

       
2 1 13 2 1 10 0 5

0; 0

f f

a av v a av w
g g b c

v w v w

  

 

           
   

   

 
   

     
   

The eigenvalues, in addition to the trace and determinant 
of equation (5) provide the tools for implementing a 
comprehensive qualitative analysis of the FHN model provided 
we have a non-zero determinant and a negative trace. Details 
of the steps involved can be found in several texts [11-14] 

       det 1 , ,J a ac b trace J a a b               
. 

The eigenvalues are represented by:

 
 

2 4
61,2

2

 


  


 Figure 1a: Time evolution of membrane voltage for stimulus current I =0.
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the rest point, as well as an unstable limit cycle (Figure 2b) and 

nullclines (Figure 2c) for I=.0351320 with calculated equilibrium 

point (.0781,.0307). The solution is unstable because the real 

part of the computed eigenvalue is positive  .0001 0871i . On 

the other hand a slight change in the value of the bifurcation 
parameter gives a stable focus as an example for I=.035010, the 
equilibrium points are (.0778,.0306) accompanied by a complex 

conjugate eigenvalues of  0.0002 .0871i  . A slight increase of 

stimulus to I=.0351434 has a computed fi xed point of (.0781, 

0.0308) and complex conjugate eigenvalues  0.0002 .0871i  
which is indicative of an unstable focus.

To a large extent, the generation of cell activity in a neuron 
does not depend totally on the stimulus strength alone instead 
a strong response can be motivated as long as the stimulus 
exceeds a certain threshold level. 

We hasten to comment that sudden dynamical changes of 

Figure 1b: Membrane voltage and Recovery variables versus time for zero applied 
current I=0.

Figure 1c: Nullclines and limit cycle projections for I =0.

 

Figure 1d: Phase plane projection of nullclines indicating fi xed points for zero input 
current.

Figure 2a: Time course for membrane voltage and recovery for stimulus current I 
= 0.35132.

Figure 2b: Phase plane projection for unstable limit cycle for I = 0.035132.
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stabilities in nonlinear systems is indicative of Hopf Bifurcation. 
In between these two cases, there must exist a situation where 
the real component of the eigenvalues are either negligible or 
non-existent and the rotational component (the imaginary 
part) plays a major part in the overall dynamics by yielding an 
insight into the frequency of the linearized oscillation. Figures 
3,4 show the time evolution of eigenvalues and an insight into 
the bifurcation of the model. The fi gure is far from uniform for 
a reason. While the straight or the linear regimes refl ect areas 
where there are single dominant eigenvalues, the nonlinear 
dome-shaped regions are indicative of regions where the 
dominant eigenvalues are characterized by complex conjugate 
pairs. 

We further explore the dynamics of the FHN model by 
turning our attention to equation (3) for the case where all the 
parameters are much smaller than one; 0.08 0.7and b   . 
The Jacobian matrix is given as :

 
21 1* 7

0.08 .064

;* *

f f

Vv w
g g

v w V V W W

 

   
  

   

 
   

     
 

where * *,V W  are values of the dependent variables at 
equilibrium points. 

To illustrate this further, we start with I=0. Figure 5a shows 
the time evolution of the membrane potential and the recovery. 
It can be seen that the external stimulus factor for the membrane 
current is not large enough to initiate interaction between the 
recovery current and the voltage. Figure 5b displays the stable 
point location on the nullclines. The point of intersection of the 
nullclines or the equilibrium point is (-1.1994,-0.6243). The 

Figure 2c: Nullclines for applied current I = 0.0351320.

Figure 2d: Phase plane for FHN model showing nullclines for I = 0.035010.

Figure 3: Phase plane of Lyapunov exponent versus Bifurcation parameter.

Figure 4: Trajectories of Lyapunov exponent and frequency of linearized oscillations.
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eigenvalues are a pair of complex conjugates :(-0.2473+0.2083i, 
-0.2473-0.2083i) and represents a spiral sink. The magnitude 
of the imaginary part of these eigenvalues, 0.2083i yields the 
frequency of the linearized oscillation and corresponds to a 

period of 2 30.16411573
0.2083

  . Figure 5c depicts a phase 

portrait of the model for this specifi c case. The curve in the 
phase plane where 0v   is clearly visible. Away from this 
curve, v is at least an order of magnitude greater than w ; in 
addition, the values of the parameter chosen for this model 
are an order of magnitude smaller than one. Hence the fl ow 
moves rapidly towards the 0v   curve. Since there is only one 
point in the nullclines where the 0v   can be crossed by the 

0w   line, the fl ow is forced to move slowly in this region and 
stay very close to the nullcline ( see the cusp very close to the 
equilibrium point). Most of the exciting topological features 
happen in this region as t    

Figure 6a shows the time evolution of membrane current 

and response for a stimulus of I = 0.32 . The equilibrium 
(v,w) is (-0.9769, -0.3461) and the corresponding complex 

eigenvalues are (-0.0052+0.2782i, -0.0052-.2782i,) . This 
again corresponds to a spiral sink. Figure 6b shows the limit 
cycle for this set of parameters. A more comprehensive picture 
is displayed in Figure 6c with the limit cycle imposed on the 
v-w nullclines. However some interesting features come into 
play when the stimulus current is slightly changed to I = 0.34 
(Figure 6d). There is a slight change in equilibrium; (v, w) = 
(-0.9601,-0.3251) and the complex conjugate eigenvalues 
come out as (0.0111+0.2748i, 0.0111-0.2748i). The change in the 
signs of the real components of the complex conjugate pairs 
of eigenvalues indicate expanding and contracting spirals with 
respect to the equilibrium points. We note that for the previous 
case (I=0.32), the real part is negative hence it is a contracting 

Figure 5a: Temporal evolution for v-w profi les for equation (3) (I= 0).

Figure 5b: Phase diagram and the location of stable point I = 0 ( equation 3).

Figure 5c: Phase portrait for the FHN model for an input current of zero ( equation 
3).

Figure 6a: Trajectories of the voltage and recovery variables for I = 0.32).
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spiral ;the phase paths approach the stable point and the 
system is stable. For this later case, the real components of 
the complex conjugate eigenvalues are positive and indicate 
instability.

The stimulus current that corresponds to the point of 
transition i.e. where the real component of the complex 
conjugate eigenvalues attain zero values and passes the 
imaginary axis in the complex plane was found to be I=0.3264; 

with a stable point of (-0.9716, -0.3395) and complex conjugate 

pair of (0000+0.2772i, 0000-0.2772i). The equilibrium point for 
this case is identifi ed as a center because the spiral component 
clearly dominates the eigenvalues. As a fact, where one or more 
of the eigenvalues approach a vanishing real component either 
stability or instability is possible but non-conclusive. Further 
increase in the value of the stimulus current, at some stage, say 
at I = 1.45 results in the decoupling of the voltage potential and 
the recovery (Figure 6e) with stability coordinates located at 
(0.9993, 2.1166) . The eigenvalues (-0.0213+0.2807i, -0.0213-

0.2807i) are complex conjugates, with a relatively strong 
rotation component. The corresponding limit cycle is shown 
in Figure 6f.

For the set of parameters chosen herein, we have seen the 
topological features displayed by the FHN model as well as 
the ubiquitous signifi cance of the bifurcation parameter I. If 
it is below a certain threshold, then the membrane potential 
v does not come fast enough to excite the system. However 
when it exceeds this level, the neurons begin to fi re; with v 
exhibiting peaks and troughs accompanied by a relatively slow 
acting recovery variable or current. As demonstrated, further 
increase in I propels the system through another threshold, 
which pushes the recovery current still further into another 
steady state with an eventual shutting down of the activation 
potential v. In order to have a clearer understanding of the 
physics of the dynamics, I is allowed to grow slowly in time by 
admitting small random noisy perturbations of its magnitude 
and the overall effect studied.

Figure 6b: Phaseplane trajectory showing a limit cycle profi le for I = 0.32 in the v-w 
plane.

Figure 6c: Nullclines with a superimposed limit cycle (I=0.32).

Figure 6d: A time series simulation for v(t) and w(t) for I = 0.34.

Figure 6e: Decoupled v(t) and w(t) profi les for I = 1.45.
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Figure 7a shows a plot of the recovery variable w versus 
the input current (bifurcation parameter). As the input 
current is increased, the system displays a transition from 
one qualitative type of dynamics to another. This transition 
involves movements away from an equilibrium point and 
away from the limit cycle. This is accompanied by an increase 
in the magnitude negative eigenvalue to a point where it 
becomes zero with a disappearance of equilibrium. The whole 
system moves from quiescence to periodic spiking. Or as 
often as is the case, two complex-conjugate eigenvalues with 
negative real parts approach the imaginary axis and become 
totally imaginary. These are hallmarks of Hopf-bifurcation. 
Right at the beginning, there is a transition from resting 
to periodic spiking (subcritical) and towards the end, the 
profi le completely switches off. Thus we observe two major 
qualitative events which are emblematic of Hopf bifurcations. 
A 3-D representation of the essential features of the prevailing 
dynamics are depicted in Figure 7b. The two ends of this image 
reveal that there must be a pair of bifurcations for the specifi ed 
values of the model parameters as equilibrium is de-stabilized.

Figure 7c shows the time evolution of voltage at fi xed 
points versus the bifurcation parameter. This offers a clue 
concerning the range of equilibria the system undergoes for 
that period. Obviously for points before the Hopf bifurcation, 
the stable fi xed point solution will have equal maximum and 
minimum. This is immediately altered as the values of the 
stimulus current that achieves bifurcation are attained and the 
gradient of the profi le signifi cantly changed. 

Figure 8 shows the limit cycles of FHN model. It clearly 
indicates the values of the membrane voltage and recovery 
currents for neuron switch off and on. Further information 
concerning the dynamics of the Hopf bifurcation can be 
obtained by exploring information contained in the eigenvalues 
of the Jacobian matrix. To achieve this, we plot the maximum 
real parts of the eigenvalues of the Jacobian matrix the so called 
spectral abscissa versus the stimulus current [15]. The plot, as 
expected, is not smooth (Figure 9a). It breaks into four distinct 
regions namely regions where the dominant eigenvalues of the 

Figure 6f: An unstable limit cycle plot for I = 0.34.

Figure 7a: Time evolution of the membrane potential for a random input of stimulus 

current involving switching on  200T   and switching off  800T  .

Figure 7b: 3D representation of time evolution of v,w and I for random current input.

Figure 7c: *
v  versus random values of stimulus current.
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Jacobian matrix are a complex conjugate pair (Hopf bifurcation) 
as well as those where there is a single dominant eigenvalue. 
On the whole, they characterize the fl ow patterns initiated by 
the range of the stimulus current adopted for the model. And a 
transition from one qualitative state to another.

Figure 9b is an attempt to complement Figure 9a by giving 
more information concerning stability or the existence of a 
limit cycle attractor. Like before we employ various values of 
the bifurcation parameter I. But for each of the values of I, we 
neglect the transient period and plot the evolution of minimum 
and maximum membrane voltages for each value of I. It is 
observed that when I is small, the solutions converge to the 
stable equilibrium and both minimum and maximum voltages 
are equal to the resting voltage. However with an increase in 
I both values begin to diverge. This signals the existence of a 
limit cycle attractor whose amplitude increases as I does.

Figure 9c is a plot of the real and imaginary components of 
the eigenvalues of the FHN model. Basically it displays three 

regions of interest. The fi rst region is marked by a resting state 
where the imaginary component is zero and there is little or 
no rotation. This stage continues until the real component 
attains a certain negative value and loses its stability effect. 
There is a dramatic change in profi les for the second region 
as the imaginary component diverges and takes on positive 
and negative values. The change in the magnitude of the real 
component is less pronounced and still remains negative as 
the system tries to retain its stability. As the real part attains 
a zero value, the transition from stable to unstable begins to 
happen and the real component becomes more positive (the 
second part of region 2 within the elliptical shape). The third 
region corresponds to a stage where the system becomes more 
unstable and less rotational. The overall observation is in 
consonance with the discussion carried out herein. 

In Figure 10 The Lyapunov exponents defi ned by the 
real part of the Jacobian eigenvalues are plotted against the 
bifurcation parameter. The plot is divided into four regions 
which correspond to transitions between regimes of different 
dynamical activities. Regions marked by straight lines are those 

Figure 8: A cluster of limit cycles in a phase plane for random values of stimulus 
current.

Figure 9a: Spectral abscissa of the Jacobian matrix versus random values of input 
current.

Figure 9b: Maximum and minimum values of membrane potential versus bifurcation 
parameter.

Figure 9c: A plot of imaginary versus real components of complex conjugate 
eigenvalues.
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Figure 10: Real component of complex conjugate eigenvalues versus bifurcation 
parameter.

that where there is a single dominant real eigenvalue. Whereas 
the dome shaped region is where the dominant eigenvalues of 
the Jacobian matrix are a complex conjugate pair.

Conclusion

The FitzHugh-Nagumo (FHN) model is a direct 
demonstration of a membrane excitation and a simplifi ed 
version of the Hodgin-Huxley (HH) model. It essentially 
simulates the generation of action potential on an excitable 
cell membrane arising from a stimulus current I. In the work 
presented herein we employ an FHN two fi rst-order ODEs to 
generate some essential features of neuron messaging and 
reception as well as the propagation of impulses in multi-
cellular organisms. Considerable efforts have been placed in 
emphasizing the qualitative aspects of the numerical results 
as a way of better understanding the underlying physics. 
Interestingly we took advantage of the two-ODE FHN model 
by using a computational-geometric technique known as the 
phase plane analysis as an exploratory tool. With this, we 
were able to compute the steady state values of the solutions 
(referred to as fi xed points) before classifying the dynamics and 
stability of these solutions. A good many of the issues arising 
from the ensuing results may have been treated differently 
elsewhere; nevertheless they still constitute a key area of 
research in other areas of real-life applications involving the 
FHN-like models. As mentioned earlier, we have been able to 
gain a better insight into the underlying physics motivating 
the self activation-inhibitor response of the FHN model to 
various input parameters until a threshold value is attained. As 

can be seen from the graphs of fi gs. 9 and 10 the values of the 
numerical abscissa dip below zero for some of those parameter 
values. This signals a dissipation before a Hopf-Bifurcation is 
attained.

References

1. FitzHugh R (1961) Impulses and physiological states in models of nerve 
membrane. Biophys J 1: 445-466. Link: https://bit.ly/2V1YljY 

2. Nagumo J, Arimota S, Yoshizawa S (1962) An active pulse transmission line 
simulating nerve axon. Proc IEEE 50: 2061-2070. Link: https://bit.ly/2WAp2gI 

3. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current 
and application to conduction to conduction and excitation in nerve. J Physiol 
117: 500-544. Link: https://bit.ly/3t3ws7E 

4. Wilson HR (1999) Simplifi ed dynamics of human and mammalian 
neocortical neurons. Journal of Theoretical Biology 200: 375-388. Link: 
https://bit.ly/3jy7z12 

5. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a 
unit of neural information: Selective communication via resonance. Trends 
Neurosci 26: 161-167. Link: https://bit.ly/38tAIE3  

6. van der Pol B (1920) A Theory of amplitude of free and forced triode vibrations. 
Radio Review 1: 701-710.

7. Morrison F (2008) The art of modelling dynamic systems: Forecasting for 
chaos, randomness and determinism. Dover Publications, Inc. Mineola, NY. 
Link: https://bit.ly/3h9bsIf 

8. Feng J (2004) Computational Neuroscience. Comprehensive Approach, 
Chapman Hall/CRC books, Boca Raton, Florida. Link: https://bit.ly/38JjeE5 

9. Khiari AY (2015) Analyzing Neural Firing with FitzHugh Nagumo model. 
A thesis submitted in partial fulfi llment of the requirements for the 
degree of Master of Science, The University of New Brunswick. Link: 
https://bit.ly/2V2SpHw 

10. Izhikevich EM (2002) Resonance and selective communication via bursts 
in neurons having subthreshold oscillations. BioSystems 67: 95-102. Link: 
https://bit.ly/3kGjzNl 

11. Miller P (1969) An Introductory Course in Computational Neuroscience. The 
MIT Press Cambridge Mass. London, England. Link: https://bit.ly/3gQRrFV 

12. Keskin AU (2018) Ordinary Differential Equations for Engineers Problems with 
MATLAB solutions. Springer.

13. Hassard BD (1980) Computation of Invariant Manifolds. In New Approaches 
to Nonlinear Problems in Dynamics (Holmes, P.J. ed.), Philadelphia: SIAM. 
Link: https://bit.ly/3gPHZmc 

14. Dunn SM, Constantinides A, Moghe PV (2005) Numerical Methods in 
Biomedical Engineering, Elsevier Academic Press. Link: https://bit.ly/3zFHrXK 

15. Trefethen LN, Birkisson A, Driscoll TA (2018) Exploring ODEs SIAM 
Philadelphia. Link: https://bit.ly/3yB5zcx 

Copyright: © 2021 Onyejekwe OO. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and r eproduction in any medium, provided the original author and source are credited.


