
Archive of Biomedical Science and Engineering eertechz

Citation: Negahbani M, Joulazadeh S, Marateb HR, Mansourian M (2015) Coronary Artery Disease Diagnosis Using Supervised Fuzzy C-Means with 
Differential Search Algorithm-based Generalized Minkowski Metrics. Biomed Sci Eng 1(1): 006-0014.

006

Abstract

Introduction: Coronary Artery Disease (CAD), one of the leading causes of death, is narrowing 
the walls of the coronary arteries. Angiography is the most accurate but invasive and costly CAD 
diagnosis method associated with mortality. The aim of this study was to design a computer-based 
non-invasive CAD diagnosis system.

 Methods: In this work, a dataset from Cleveland clinic foundation, containing 303 patients and 20 
features, was used. Supervised Fuzzy C-means (SFCM) classification was used to design a classifier 
for CAD diagnosis. The Generalized Minkowski Metrics (GMM) was used to handle objects containing 
different measurement scale features. The performance of the SFCM was assessed with/without 
Statistical Feature Selection (SFS). The weights of the GMM, i.e. the significance of different features, 
beside other classifier parameters were tuned using Differential Search Algorithm (DSA), and the 
validity of the proposed classifier was further investigated. The hold-out and 10-fold cross validation 
were used for the performance assessment.

Result: The average accuracy of the base classifier (SFCM + GMM) was 79% (hold-out 
validation). It increased to 82% when using SFS. The average accuracy, sensitivity and specificity of 
the DSA-based classifier were 88%, 86% and 88%, respectively (cross-validation).

Conclusion: The most important features were the number of major vessels colored by 
fluoroscopy, the family history of CAD, peak exercise systolic blood pressure, maximum exercise 
heart rate achieved, chest pain type, resting heart rate, Fasting Blood Sugar and gender. This classifier 
showed substantial agreement with the angiographic results. The hybrid diagnosis system is thus 
promising. However, it is necessary to improve its reliability.

The CAD risk factors have been identified over the past 
several decades include abnormal levels of circulating cholesterol, 
hypertension, cigarette smoking, diabetes, male gender, 
postmenopausal state, advancing age, sedentary lifestyle, obesity, and 
a positive family history of premature vascular disease. Moreover, 
new risk factors have been emerged as elevated blood levels of 
homocysteine, fibrinogen, inflammation and infection, atherogenic 
lipoprotein phenotype, elevated levels of lipoprotein, insulin 
resistance syndrome, psychosocial factors and a number of genetic 
polymorphisms [5].

There are several diagnostic tools for CAD [6-8]. Some of the 
general diagnostic tests include physical examination, lab tests, 
Electrocardiogram (ECG), echocardiogram, stress test, electron 
beam computed tomography, coronary angiography and cardiac 
catheterization. One of the major limitations of ECG is the undiagnosed 
symptoms of CAD. On the other hand, another alternative invasive 
methodology, angiogram, is painful and discomfort to the patients. 
Furthermore, the above mentioned procedures take a lot of cost, time 
and effort [9]. 

Abbreviations 
CAD: Coronary Artery Disease; DSA: Differential Search 

Algorithm; GMM: Generalized Minkowski Metrics; HDL: High-
density lipoprotein; LDL: Low-density lipoprotein; MLR: Multiple 
Logistic Regression; PSO: Particle Swarm Optimization; SFCM: 
Supervised Fuzzy C-Means

Introduction
Coronary Artery disease (CAD), the most common type of 

heart disease, is one of the leading causes of death in industrialized 
countries and is rapidly achieving the same dubious distinction in 
developing nations as well [1]. 

CAD is the result of the accumulation of plaques within the 
walls of the coronary arteries supplying blood to the myocardium 
[2]. Blockage of one or more coronary arteries interrupts the flow 
of the blood to the heart, which causes heart attack [3]. The CAD is 
considered when narrowing of at least one of the coronary arteries is 
more than 50% [4].
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Computer aided diagnostic methods which extract relevant 
features and use them in classifiers for automated detection of diseases, 
can overcome such difficulties. Such techniques are noninvasive and 
provide reproducible and objective diagnosis, and hence, can prove 
to be valuable adjunct tools in clinical practice [9].

Yan et al. used an improved back propagation algorithm to 
train the CAD medical diagnosis system [10]. A novel inference 
engine named fuzzy-evidential hybrid inference engine proposed 
by Khatibi et al., used Demister–Shafer theory of evidence and fuzzy 
sets theory to diagnose CAD. This hybrid engine precisely modeled 
the information’s vagueness and decision making’s uncertainty and 
through information fusion, provided accurate results [11]. A fuzzy 
expert system based on particle swarm optimization (PSO) was 
developed by Muthukaruppan et al., in order to classify heart disease 
and healthy condition. In the proposed method, the significant 
attributes and fuzzy rules were extracted using the decision tree 
algorithm [12]. Giri et al., proposed a methodology for the automatic 
detection of normal and CAD using heart rate signals. It was shown 
that Gaussian Mixture Model classifier had the best results among 
the three other classifiers Support Vector Machine, Probabilistic 
Neural Network and K-Nearest Neighbor [9]. Using feature selection 
and extraction algorithm, Alizadehsani et al., enriched the dataset. 
Then, Information Gain and confidence were used to determine the 
effectiveness of features on CAD [13]. 

In this study, we proposed an automated medical diagnosis 
system based on the statistical feature selection, supervised fuzzy 
c-means (SFCM) and Generalized Minkowski Metrics (GMM). Since 
the features used for CA diagnosis have different measurement scales 
(nominal, ordinal or interval), a mixed-type data distance metric was 
used. A statistical feature selection method was used to reduce the 
feature space. Alternatively, the weights of the input features were 
tuned on the GMM using a novel stochastic optimization method 
called Differential Search Algorithm (DSA) and the important 
features were selected. The data-set, methodologies and the validation 
procedure will be studied at the following sections. 

Materials and Methods
Experimental methods

In this work, the CAD dataset from the University of California 
(UCI, Irvine), available online, taken from the Cleveland Clinic 
Foundation datasets [14-17], was used. This database consisted of 303 
records with 76 attributes (features), among which 13 to 20 features 
have been widely used in the literature [12]. The experimental 
protocol of recording the dataset was mentioned elsewhere in 
details [14,18]. A number of 303 consecutive patients referred for 
coronary angiography at the Cleveland Clinic between May 1981 and 
September 1984, without the history of prior myocardial infarction 
or known volvuli or cardiomyopathy diseases, participated in the 
experiment. Different demographic and clinical attributes (some of 
which were listed in (Table 1)) were recorded from the CAD (case) 
and healthy (control) subjects [19]. When at least one of the coronary 
arteries narrowed more than 50%, shown by angiography, the CAD 
was considered in the subjects [4]. The aim of the study was to design 
a computer-based CAD diagnosis system using 30 recorded features 

whose outcome had acceptable agreement with that of coronary 
angiography. In the next section, the Fuzzy C-means (FCM) data 
mining techniques are introduced.

Fuzzy C-means (FCM) Algorithm in clinical 
applications

Risk factors are the smallest units indicating the existence 
of a disease. A syndrome, on the other hand, is a collection, a set, 
or a cluster of concurrent risk factors, which together indicate the 
presence and the nature of the disease. Here the main question is that 
what the relation between these risk factors and a specific syndrome 
is. Classification and clustering are therefore basic concerns in 
medicine. Classification depends on the definition of the classes and 
on the required degree of affiliation of their elements [20].

Clustering algorithms are generally divided into two groups. First, 
hard partitioning algorithms which are based on classical set theory; 
they require that an object either does or does not belong to a cluster. 
Soft clustering methods however, allow the objects to belong to 
several clusters simultaneously with different degrees of membership 
[21]. Fuzzy clustering methods are one of the well-known methods 
of soft clustering which are vastly used in solving medical diagnosis 
problems. In medicine, there are usually imprecise conditions and 
highly overlapping classes and therefore fuzzy methods seem to be 
more suitable than crisp ones [20].

FCM algorithm was first introduced by Bezdek as the 
enhancement to the classical K-means clustering [22]. This algorithm 
estimates the membership function of the object k to the clusters i (

0iku ≥  ) to minimize the following cost function [23]:
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Where dik is the distance measure of kth data point from ith cluster 
center and parameters c, n and m ≥ 1 are the number of clusters 
and objects in the dataset and the fuzzy coefficient, respectively. In 
the probabilistic FCM, the following constrain must be met when 
optimizing the above cost function:
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The FCM algorithm iteratively estimates the cluster centers and 
the membership functions to minimize the cost function (Jr) which 
could be found elsewhere in details [23]. 

Despite all the benefits of using FCM as the clustering core 
algorithm, it is still a blind method and may misclassify the input 
data. Thus it is necessary to train the algorithm in a way that induces 
a meaningful convergence. As a result, the classification will be even 
more accurate. 

In the original FCM the data distance to the cluster centers 
are normally calculated using standard Euclidean distance. In our 
case, each object is a vector of multiple risk factors with various 
measurement scales types in different ranges, hence using the classic 
Euclidean distance is not appropriate [24]. Basically, there are three 
major data types in clinical data sets: nominal, discrete ordinal, and 
Interval. Nominal scales are only used for non-ranked qualitative 
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Table 1: The attributes of the raw Cleveland dataset for normal and Coronary Artery Disease (CAD) groups, along with their categories (percentage) for qualitative 
variables and (min-max) mean±SD for quantitative variables.

Attribute Measurement 
Scale Definition Categories*

Demographic attributes
Normal CAD

Age Interval Age in years - (29-76) 53±9 (35-77) 56±8

Gender Nominal Sex Male/Female Male (54.8%), 
female (45.2%)

Male (84.0%), 
female (16%)

Trestbps Interval Resting blood pressure (mmHg) - (94-180) 129±17 (100-200) 134±19

CHOL Interval Serum cholesterol (mg/dl) - (126-564) 244±53 (149-409) 256±48

FBS Nominal Fasting Blood Sugar > 120 
(mg/dl) True/False False (85.4%), 

True (14.6%)
False (84.8%), 
True (15.2%)

Restecg Nominal resting electrocardiographic 
results

(1) Normal; (2) Having ST-T wave abnormality (T wave 
inversions and/or ST elevation or depression of > 0.05 
mV); (3)Showing probable or definite left ventricular 
hypertrophy by Estes' criteria

1 (56.7%), 2 
(0.6%), 3 (42.7%)

1 (39.2%), 2 
(0.8%), 3 (60.0%)

Thalrest Interval resting heart rate (bpm) - (49-119) 77±14 (40-109) 73±13

Cigs Interval number of cigarettes per day - 0-99 (15±19) 0-80 (17±20)

Years Interval Number of years as a smoker - (0-50) 14±14 (0-54) 17±16

Famhist Nominal family history of CAD Yes/No No (42.0%), Yes 
(58.0%)

No (32.8%), Yes 
(67.2%)

Cp** Nominal chest pain type (1) Typical angina pectoris; (2) Atypical angina; (3) 
Nonanginal pain; (4) No pain

1 (10.2%), 2 
(22.3%), 3 
(42.7%), 4 (24.7%)

1 (4.8%), 2 
(6.4%), 3 (13.6%), 
4 (75.2%)

Tpeakbps Interval peak exercise systolic blood 
pressure (mmHg) - (84-232) 170±23 (90-230) 165±25

Tpeakbpd Interval peak exercise diastolic blood 
pressure (mmHg) - (26-120) 78±14 (50-120) 79±12

Thalach Intreval maximum exercise heart rate 
achieved (bpm) - (96-202) 158±19 (71-195) 139±23

Exang Nominal exercise induced angina Yes/No No (85.4%), Yes 
(14.6%)

No (44.8%), yes 
(55.2%)

Oldpeak Interval ST depression induced by 
exercise relative to rest - (0-4) 0.6±0.8 (0-6) 1.6±1.3

Slope Ordinal the slope of the peak exercise 
ST segment (1) Upsloping; (2) Flat; (3) Downsloping 1 (64.3%), 2 

(30.6%), 3 (5.1%)
1 (27.2%), 2 
(64.8%), 3 (8.0%)

Ca Interval number of major vessels (0-3) 
colored by fluoroscopy - (0-3) 1±1 (0-3) 1±1

Thal*** Nominal thallium-201 stress scintigraphy (1) Normal; (2) Fixed defect; (3) Reversible defect 1 (79.5%), 2 
(3.8%), 3 (16.7%)

1 (28.2%), 2 
(6.5%), 3 (65.3%)

Num Nominal diagnosis of heart disease 
(angiographic disease status)

(1) Normal : < 50% diameter narrowing; (2) CAD: > 50% 
diameter narrowing

 *: The categories were shown for nominal or ordinal features; **: (1) Typical angina pectoris: Pain that occurs in the anterior thorax, neck, shoulders, jaw, or arms is 
precipitated by exertion and relieved within 20 min by rest. (2) Atypical angina. Pain in one of the above locations and either not precipitated by exertion or not relieved 
by rest within 20 min. (3) Nonanginal pain. Pain not located in any of the above locations, or if so located not related to exertion, and lasting less than 10 sec or longer 
than 30 min. (4) No pain; ***: (1) Normal, (2) Fixed abnormality (defects observed during exercise that persisted at redistribution), and (3) Reversible abnormality 
(defects present during exercise and significantly corrected during redistribution).

classification e.g. gender, blood type, and health condition. A discrete–
ordinal scale is a nominal variable, but the different states are ordered 
in a meaningful sequence e.g. the slope of the peak exercise ST 
segment. Interval scales are measured on a linear scale e.g. BMI (Body 
Mass Index) and age. It is important to define a distance measure to 
balance all these differences in a way that no feature lessens the other 
features’ effect or vice versa.

SFCM algorithm
The class labels provide a useful guidance during training 

procedure. Hence, it is necessary to use the labeled samples in 
training phase and unlabeled samples in testing phase to improve 
the performance of FCM. This idea led to the development of a new 

algorithm called Supervised Fuzzy C-Means (SFCM) algorithm, a 
slight modification of FCM [25].	

The main goal of SFCM is to use the labeled data samples to 
guide the iterative optimization procedure. In this method, a known 
fixed set of categories and category-labeled training data are used to 
induce a classification function. The determination of fuzzy partition 
matrix U (dividing N data sets into C classes) using Supervised Fuzzy 
C-Means clustering is an iterative optimization procedure. The 
objective function of SFCM classification is defined as:
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Where U is the fuzzy partition matrix, V is the cluster center, fik 
is the membership degree of kth labeled sample belonging to the ith 
cluster (value is either 0 or 1).

The coefficient ‘a’ denotes the scaling factor. The role of ‘a’ is to 
maintain a balance between supervised and unsupervised component 
within the optimization procedure and parameter ‘m’ controls the 
amount of fuzziness in the classification. The typical value of m is 2 
and a=L/n, L denotes the size of labeled samples [25]. However, it is 
better to tune these two parameters based on the properties of the 
dataset. Function Jm can take a large number of values, the smallest 
one being associated with the best clustering.

An effective algorithm for supervised fuzzy classification is 
discussed herein. The steps of algorithm are as below [20,25]:

1)	 Initiate fuzzy partition matrix, U(0), with random values 
between 0 and 1 and fix the number of cluster centers as the 
number of outcome classes.

2)	 Start the iterative procedure and set the iteration counter to 
one.

3)	 Calculate the cluster centers using the following equation:
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Where, Vij
(t) represents the ith cluster center of jth feature which j 

changes from 1 to m (number of features), and Zkj
(train) is the kth data 

instance corresponding to the mth selected feature variable.

4)	 Calculate the distance between ith cluster center and kth dataset, 
distance measured with Euclidean Distance as follows: 
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5)	 Update the fuzzy partition matrix for the next iteration 
given by the following equation:
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For test set samples, whose class labels are unknown, the fuzzy 
partition matrix is calculated as follows:
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6)	 When ‖U(t+1) - U(t)‖ ≤ ε (ε is the iterative accuracy) has achieved, 
Stop the iteration; In this case outputs will be v (cluster center) 
and U (fuzzy matrix), otherwise return to step 3. 

Statistical Feature Selection (SFS) 
In many classification problems, especially in the biomedical 

domain, high dimensional data with few observations are used [26]. 
This can lead to lower classification accuracy and clusters of poor 

quality. High dimensional data is also a serious problem for many 
classification algorithms due to its high computational cost, memory 
usage andthe curse of dimensionality [27].

Since most of the features are redundant or irrelevant, feature 
selection method (FS) is used to pick a subset of features that are 
relevant to the target concept [28]. In this work, a statistical FS method 
entitled as Multiple Logistic Regression (MLR) was used, which is 
widely used to identify relevant risk factors in epidemiological studies. 
MLR, known as feature vector machine in machine learning, can be 
used to select statistically significant features. It not only considers 
significant features that provide acceptable discrimination between 
two classes, but it also takes into account the correlation between 
features. After running MLR on the input features (excluding the 
intercept point in the analysis), the selected features were used in the 
tested classifier [2,29,30].

Measurement scale
It is impossible to perform any arithmetic operation on nominal 

data because it has no order. The only Operation defined here is the 
equality. The distance of two nominal instances A and B is 1, if A 
equals B, and 0 otherwise.

For interval scales, it is possible to calculate the distance with 
standard norm definitions. The distance between two data samples 
A and B from a given interval I, is defined as |A-B|. As the interval 
size could be different between multiple features, it is important to 
normalize the distances relative to the interval size given as |A-B| / |I|.

Discrete–ordinal scale is a nominal variable, but the different 
states are ordered in a meaningful sequence. Ordinal data has order, 
but the intervals between scale points may be uneven. But still, the 
distance of two samples lying in the same interval is computed 
similar to that of interval distance i.e. |A-B| / |I|. Now, each feature is 
normalized to a value between 0 and 1.

Note that |I| is calculated by subtracting the maximum and 
minimum values herein. The l1-norm was then used to combine the 
distance between different transformed features, simply known as 
GMM in the literature [31,32]. Thus, the GMM distance definition 
between two feature vectors A and B, could be given as below:

 
1

( , ) (A ,B )
d

GMM k k k
k

d A B cψ
=

=∑  			                (8)

Where d is the number of dimensions, Ψ is the distance function 
for each feature which varies according to its measurement scale, and 
Ck are weights. The weights could be either set to the value of unity 
or tuned using an optimization algorithm. Accordingly, the features’ 
weights were set to unity when using GMM+SFCM with/without 
MLR. Alternatively, instead of using SFS, all of the features were used 
and their weights were calculated and the features with small value 
of weights were neglected. For the later approach, it is necessary to 
use an efficient optimization algorithm, discussed at the next section. 

Differential Search Algorithm (DSA)
DSA is an optimization algorithm developed by P. Civicioglu 

simulating the Brownian-like random-walk movement used by 
an organism to migrate [33]. The motivation of DSA, like many 
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population-based stochastic optimization algorithms, was taken from 
the nature. Many living organisms show annual migration. In this 
migration, super organism is constituted containing large number of 
individuals. The movement of a super organism could be illustrated 
by a Brownian-like random-walk model [33,34]. In DSA, the 
population contains random solutions. The migration is performed 
to the global optimum of the cost function. At each iteration, some 
of the populations are selected. They move based on a Brownian-
like random walk model [34]. DSA is simple to implement and was 
shown to have acceptable performance in variety of the optimization 
problems in comparison with that of other traditional optimization 
algorithms while it is not too sensitive to the initialization of its 
parameters [33]. 

We have used DSA to optimize the parameters of GMM and 
SFCM. The cost function was the absolute error rate of the classifier 
on the training set. The initial setting of the DSA used in our study was 
similar to that of P. Civicioglu [33]. Briefly, the size of the population 
was set to 30, and the maximum number of function evaluation value 
(i.e. the number of times that the cost function was called in the 
program) as the only stopping criterion was 2,000,000. 

Performance measures for classification
The performance of a classifier could be evaluated by computing 

the number of correctly recognized CAD subjects (TP: True 
Positives), the number of correctly recognized healthy subjects (TN: 
True Negatives), and examples that either were incorrectly assigned 
to the CAD class (FP: False Positives) or that were missed as class 
examples (FN: False Negatives). These four counts constitute the 
information-theory formulas to accurately measure the performance 
of the classification [35,36]. 

Results 
The demographic information of the Cleveland CAD data was 

shown in (Table 1) for the case (CAD) and control (healthy) groups. 
To assess the performance of the base classifier, the main dataset 
was randomly divided into two roughly equal size datasets, namely 
dataset 1 and dataset 2 (hold-out validation method [23]). The best 

Accuracy (Acc) achieved when tuning on the dataset 1 and testing on 
the dataset 2 and vice versa in ten runs of the SFCM algorithm with 
GMM distance measure (unity weights) was shown in (Table 2). The 
maximum number of iterations was set to 100 in all the classifiers. 
The scaling factor (a) was tuned in the training set using exhaustive 
grid search (a=0.8) while the value of the fuzziness parameter (m) 
was set to 2 in the base classifier. The overall percentage accuracy (the 
average Acc of the classifier on dataset 2 when it was tuned on dataset 
1 and vice versa) in the base classifier was 79%. The average Sensitivity 
and Specificity of the base classifier were 71% and 84%, respectively.

Table 3 shows the results of running the algorithm with SFS. MLR 
revealed that following significant features: gender, cp (chest pain 
type), trestbps (resting systolic blood pressure), thalach (maximum 
exercise heart rate achieved), slope (the slope of the peak exercise ST 
segment), ca (number of major vessels (0-3) colored by fluoroscopy), 
and thal (thallium-201 stress scintigraphy). The overall accuracy for 
SFCM-SFS was 82%. The average Sensitivity and Specificity of this 
classifier were 85% and 82%, respectively.

Finally, DSA optimization method was used to tune the 
features’ weights, the fuzziness parameter and the scaling factor. 
The cost function was set as the absolute error rate of the classifier 
(SFCM+GMM) (i.e. 1-Acc) on the training set. Guarding against 
Type III error [37], 10-fold cross-validation [23] was used to assess 
the performance of the proposed hybrid classifier (Table 4). The 
average Accuracy, Sensitivity and Specificity of this classifier were 
88%, 86%, and 88% respectively. The McNemar’s test [23] revealed 
that the performance of the hybrid classifier was significantly better 
than the base classifier (p_value<0.05) but comparable with that of 
SFS+SFCM. Meanwhile, Multi-fold cross validation was used instead 
of leave-one-out, since it is proven to have better performance in 
terms of accuracy and efficiency [23].

The values of the parameters of the hybrid classifier tuned using 
DSA were shown in Table 5. The most important features (feature 
weight w>0.5) were listed in the descending order: the number 
of major vessels colored by fluoroscopy (w=1), the family history 
of CAD (w=1), peak exercise systolic blood pressure (w=0.89), 

Table 2: The performance of the base Supervised Fuzzy c-means (SFCM) classifier using Generalized Minkowski Metrics (GMM). 

Sets Training Test

Indices Se Sp Pr Acc Se Sp Pr Acc

Scenario #1 100 100 100 100 67 76 64 73

Scenario #2 79 93 91 87 81 92 94 86

Scenario #1: the classifier was trained on the dataset n.1 and tested on the dataset n.2; Scenario #2: the classifier was trained on the dataset n.2 and tested on the 
dataset n.1; Se: Sensitivity (%), Sp: Specificity (%), Pr: Precision (%), Acc: Accuracy (%)

Table 3: The performance of the Supervised Fuzzy c-means (SFCM) classifier using Generalized Minkowski Metrics (GMM) with Statistical feature Selection (SFS).

 Sets Training Test

Indices Se Sp Pr Acc Se Sp Pr Acc

Scenario #1 100 100 100 100 81 80 77 80

Scenario #2 92 90 88 91 88 83 76 85

Scenario #1: the classifier was trained on the dataset n.1 and tested on the dataset n.2; Scenario #2: the classifier was trained on the dataset n.2 and tested on the 
dataset n.1; Se: Sensitivity (%), Sp: Specificity (%), Pr: Precision (%), Acc: Accuracy (%)
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maximum exercise heart rate achieved (w=0.87), chest pain type 
(w=0.82), resting heart rate (w=0.67), Fasting Blood Sugar (w=0.64) 
and gender (w=0.54). However, the list significant attributes (w<0.1) 
were age, resting blood pressure, number of cigarettes per day, resting 
electrocardiographic results, peak exercise diastolic blood pressure, 
and the slope of the peak exercise ST segment. For the definition, and 
number of categories of the above attributes the reader is referred to 
(Table 1).

The overall performance of the hybrid classifier was shown in 
Table 6. It includes the contingency table (confusion matrix) on the 
total of 303 subjects. The agreement rate between the results of this 
classifier and those of the gold standard (i.e. CAD diagnosis using 
angiography) was assessed based on the Cohen’s kappa coefficient 
[38]. Substantial agreement was shown between the outcomes of the 
proposed hybrid classifier and angiography (kappa=0.73) [39].

Discussion
In this paper, three classification systems were designed for 

non-invasive CAD diagnosis; among which the hybrid classifier 
showed better performance (Tables 2-4). This diagnosis system was 
based on the SFCM classifier in which the distance between objects 
were calculated using GMM and the parameters of the system 
(SFCM parameters and GMM weights) were estimated using DSA 
optimization. Other approaches such as PSO [40] were used for 
optimization, but DSA showed more accurate results. The Type I error 
and the power of the hybrid classifier were 0.1 and 86%, respectively. 
Since the data-set was not totally balanced (i.e. the number of cases 
and controls were not identical), F1-score measure might be more 
accurate than the accuracy. The average F1-score during 10-fold 
cross-validation was 85±10 (%), indicating that the proposed system is 
accurate. The comparison between the performance of the postposed 

system and some of the other systems designed on the CAD dataset 
was shown (Table 7). Some methods had higher accuracy that n 
that of the proposed system. We compared the result of the method 
proposed by Muthukaruppan et al. [12]. Although its accuracy was 
93%, McNamara’s test showed that it was not significantly higher 
than our hybrid system (p_value>0.05). Another issue is that among 
the methods listed in (Table 7), those in which Fuzzy classification 
was used, showed higher accuracies. Since most or all classificatory 
concepts in medicine are fuzzy, fuzzy taxonomy was used in our 
study. Meanwhile, it is very difficult to define sharp borders between 
various symptoms in the set of all symptoms and between various 
diseases in the set of diseases [41]. Thus, the framework of fuzzy 
systems is very useful to deal with the absence of sharp boundaries of 
the sets of symptoms, diagnoses, and phenomena of diseases [19,42].

The significant features selected by the DSA, were known to be 
directly involved in CAD. Fluoroscopy is one of the most popular 
non-invasive CAD diagnosis methods whose accuracy ranges 
between 35% and 75% in comparison with that of the gold standard 
(i.e. angiography) in the literature [43,44]. We permed a univariate 
(i.e. the number of major vessels (0-3) colored by fluoroscopy) 
classification based on the Receiver Operating Characteristic (ROC) 
plot. Its accuracy was 75% (Area under Curve: AUC=0.75; cut-
off=0.5). The average number of vessels colures were statistically 
different in the CAD and normal group (independent-samples 
t-test; p_value 0.05). High value of GMM weights are in agreement 
with the statistical test. Thus, it was a suitable feature but not enough 
for accurate classification. The other traditional non-invasive CAD 
diagnosis method is thallium-201 stress scintigraphy. The prevalence 
of CAD in three groups of scintigraphy was statistically different (Chi-
square test; p_value<0.05). Having designed a decision-tree classifier 
with scintigraphy feature, the accuracy was 76%. However, due to 

Table 4: The performance of the hybrid Supervised Fuzzy c-means (SFCM) classifier with Differential Sequential Algorithm-based Generalized Minkowski Metrics 
(GMM).

 Sets Training

Indices Se Sp Pr Acc

Average 86±10 88±8 85±10 88±8

Se: Sensitivity (%), Sp: Specificity (%), Pr: Precision (%), Acc: Accuracy (%); 10-fold cross validation was performed and the average values of the indices were 
shown in Mean±SD

Table 5: The value of the system parameters obtained based on tuning on the training data set by the Differential Sequential Algorithm (DSA) optimization in the 
hybrid classifier.

 Parameter Value Parameter Value

 Age 0.085382 thalrest 0.674363
 Gender 0.539178 tpeakbps 0.891240
cp 0.817916 tpeakbpd 0.032989
trestbps 0.000000 trestbpd 0.417742
chol 0.289871 exang 0.311712
cigs 0.068179 oldpeak 0.406722
years 0.376728 slope 0.000000
fbs 0.640574 ca 1.000000
famhist 1.000000 thal 0.275304
restecg 0.074037 m 2.638523
thalach 0.865246 a 0.532491

Parameters are Generalized Minkowski Metrics (GMM), weights except a: scaling factor; m: fuzziness coefficient
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the directional correlation between fluoroscopy and scintigraphy 
(Eta=0.3), DSA estimated the fluoroscopy and the scintigraphy 
wegihts as 1.00 and 0.28. The other clinical variable is ST segment 
depression used in cardiography. Its eight was zero, indicating that 
no further information could be extracted by adding this variable. 
In the lietrature, the ranked order of CAD predictive were cardiac 
fluoroscopy score, thallium score and extent of Electrocardiography 
(e.g. ST segment depression) [45,46] which is in agreement with our 
findings. 

 CAD is associated with higher morbidity and mortality in women 
than in men [47]. It was also shown that the incidence of CAD in 
women aged less than 70 years is lower than their male counterparts 
[48]. In our study, the percentage of men and women having CAD 
were 84% and 16%, respectively. Considering that women in the CAD 
group had the age of 66 years old or lower, this is in agreement with 
our study. However, women usually have CAD 7 to 10 years later than 
men [49]. In our data-set, the average age of women and men who 
had CAD was 60±5 and 55±8 years, respectively. Moreover, gender 
was a significant feature (w=0.539). Meanwhile, the age by itself was 
not a significant feature in our study (Table 5; w=0.085). This is in 
agreement with the fact that the average age of people in the CAD and 
normal groups was 56±8 and 53±9 years, respectively (Table 1). This 
is related to the stratified age sampling used in our study.

Although, it is proved that high blood pressure increases the risk 
of CAD [50], it was not significant in our study. Meanwhile elevated 

resting heart rate is known as a CAD risk factor, which is in agreement 
with our findings (w=0.674) [51]. In the literature, the family history 
of CAD is a major CAD risk factor in adults [52]. This is in agreement 
with our findings where it had the highest GMM weight (w=1; Table 
5). Meanwhile, fasting blood sugar was known as an important 
determinant of CAD [53], in agreement with our findings where its 
GMM weight was estimated as 0.641. A high total cholesterol level 
can increase your risk of cardiovascular disease. However, decisions 
about when to treat high cholesterol are usually based upon the level 
of LDL or HDL cholesterol, rather than the level of total cholesterol. 
This might explain the fact that the weight of the cholesterol was 0.289 
in our study. Moreover, total cholesterol/ high-density lipoprotein 
cholesterol ratio were shown to be associated to CAD rather than 
cholesterol, by itself [54,55]. 

Chest pain type (GMM weight of 0.818) was divided into the 
following categories: Typical angina pectoris, atypical angina, non-
anginal pain, and no pain. Typical angina (pain that occurs in the 
anterior thorax, neck, shoulders, jaw, or arms is precipitated by 
exertion and relieved within 20 min by rest) was the most common 
symptom of CAD [18]. It occurs when blood flow to an area of heart 
is decreased, impairing the delivery of oxygen and vital nutrients to 
the heart muscle cells. The byproduct of using this inefficient fuel is 
producing lactic acid that builds up in the muscle and causes pain 
[56].

The key to a good classification is a dataset containing all the 

Table 6: The overall performance of the hybrid classifier including the contingency table (confusion matrix) of the Coronary Artery Disease (CAD) diagnosis.

Angiographic result
CAD Healthy

Th
e 

hy
br

id
 

cl
as

si
fie

r t CAD 114 (TP) 20 (FP)

healthy 19 (FN) 150 (TN)

TP: True Positives; TN: True Negatives; FN: False Negatives; FP: False Positives

Table 7: Comparison of the proposed system with other similar CAD diagnosis systems.

Author Method Accuracy

(Joulazadeh et al., 2015) Our Proposed FS-SFCM 87
(Detrano et al., 1989) Probability theory (logistic regression) 77
(Gennari et al, 1989) Clustering (CLASSIT conceptual system) 79
(Kukar et al., 1999) Bayesian classification and neural network 80
(Haddad et al., 1999) Neural network 48
(Cheung et al., 2001) BNNF 81
(Cheung et al., 2001) BNND 81
(Cheung et al., 2001) Naïve Bayes 81
(Khatibi et al., 2010) Fuzzy sets and evidence theories 91
(Senthil Kumar et al., 2011) ANFIS 91
(Senthil Kumar et al., 2012) Fuzzy resolution mechanism 92
(Muthukaruppan et al., 2012) PSO based fuzzy expert system 93
(Kahramanli & Allahverdi, 2008) Hybrid neural network system 87
(Das et al., 2009) Neural network ensembles 89
(Polat et al., 2007) Fuzzy-AIRS-Knn based system 87

CAD: Coronary Artery Disease
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possibly relevant features (i.e. risk factors mentioned in the literature) 
with enough cases (i.e. suitable sample size). Although the sample size 
of the Cleveland dataset is rather high, some important features such 
as BMI, LDL and HDL are missing. Meanwhile, we are going to design 
an automated CAD risk assessment program, based on the findings of 
this study, in collaboration with Isfahan Healthy Heart Program [57]. 
Such a large database, could allow us to investigate the accuracy of the 
proposed diagnosis system in a broader sense. Another issue is that 
the performance of the base classifier with/without FS (Tables 2,3) 
was so different in the first and second scenarios. Having calculated 
the cluster representatives for the healthy and CAD groups in the first 
and second datasets, the dataset 1 showed better discrimination in 
comparison with dataset2 on the whole 20 features and also those 
selected by the MLR. This is why that performance of the base 
classifier with/without FS was higher on the data set 1 in the entire 
training and test procedure. Also, the discrimination with/without 
FS was not that different. This, in fact, shows that the FS could have 
selected features with significant discrimination power.

Another step would be developing a web-based online system 
with which patients/ medical doctors could assess their risk of having 
CAD at home. These Web-based diagnostic decision support systems 
have been recently focused in Medicine and are proven to be valuable 
in identifying the correct diagnosis in complicated cases [58]. There 
might be two possible approaches to improve the performance of the 
proposed diagnosis system. First, further features could be defined 
by considering the interactions between input risk factors/predictors 
[59] e.g. simply multiplication of the predictors. Second, multiple 
clusters could be formed for each healthy and CAD class by using 
mixed-type data clustering methods [24]. Then, supervised FCM 
could be used with multiple clusters corresponding with two healthy 
and CAD classes. Extracting supervised classification rules on groups 
of similar objects could potentially reduce the misclassification rate 
especially close to the class borderlines. These two approaches will be 
the focus of our future work.

Conclusion 
The hybrid classifier showed the average accuracy of 87%. 

The power of the designed diagnosis system was 86%. Type I error 
(α) was 0.1 and the F-score was 85%. Although the power of the 
method is acceptable, type I error must be reduced down to 0.05, to 
introduce a reliable and accurate clinical test which is the focus of 
the future work. One possible strategy to improve the accuracy of 
the proposed diagnosis system is using classifier fusion. Combining 
different reliable classifiers, might improve the accuracy though the 
fusion procedure. In conclusion, we designed an automated non-
invasive CAD diagnosis system based on the Fuzzy theory. The results 
showed that the proposed system is promising. However, further 
improvements are needed to be able to use it in clinical laboratories.
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