Federated Learning (FL) allows multiple nodes without actually sharing data with other confidential nodes to retrain a common model. This is particularly relevant in healthcare applications, where data such as medical records are private and confidential. Although federated learning avoids the exchange of actual data, it still remains possible to fight protection on parameter values revealed in the training process or on a generated Machine Learning (ML) model. This study examines FL’s privacy and security concerns and deals with several issues related to privacy protection and safety when developing FL systems. In addition, we have detailed simulation results to illustrate the problems under discussion and potential solutions.
Keywords:
Published on: Aug 16, 2023 Pages: 29-37
Full Text PDF
Full Text HTML
DOI: 10.17352/tcsit.000066
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."